
TI-89 Titanium

© 2004 Texas Instruments Incorporated

Windows and Macintosh are trademarks of their respective owners.

Revision_Information
TI-89 Titanium Guidebook
Part 1
English
12 Apr 2004, Rev A
07 Jul 2004, Rev B

Important Information
Texas Instruments makes no warranty, either express or implied,
including but not limited to any implied warranties of merchantability
and fitness for a particular purpose, regarding any programs or book
materials and makes such materials available solely on an "as-is" basis. In
no event shall Texas Instruments be liable to anyone for special,
collateral, incidental, or consequential damages in connection with or
arising out of the purchase or use of these materials, and the sole and
exclusive liability of Texas Instruments, regardless of the form of action,
shall not exceed the purchase price of this product. Moreover, Texas
Instruments shall not be liable for any claim of any kind whatsoever
against the use of these materials by any other party.

USA FCC Information Concerning Radio Frequency
Interference
This equipment has been tested and found to comply with the limits for a
Class B digital device, pursuant to Part 15 of the FCC rules. These limits are
designed to provide reasonable protection against harmful interference in
a residential installation. This equipment generates, uses, and can radiate
radio frequency energy and, if not installed and used in accordance with
the instructions, may cause harmful interference to radio communications.
However, there is no guarantee that interference will not occur in a
particular installation.

If this equipment does cause harmful interference to radio or television
reception, which can be determined by turning the equipment off and
on, you can try to correct the interference by one or more of the
following measures:

• Reorient or relocate the receiving antenna.

• Increase the separation between the equipment and receiver.

• Connect the equipment into an outlet on a circuit different from
that to which the receiver is connected.

• Consult the dealer or an experienced radio/television technician for
help.

Caution: Any changes or modifications to this equipment not
expressly approved by Texas Instruments may void your
authority to operate the equipment.
ii

Table of Contents
Introduction ..v
The TI-89 Titanium graphing calculator.. v
How to use this guidebook.. v

1 Getting Started..1
Initial start-up ... 1
TI-89 Titanium keys... 4
Mode settings .. 10
Using the Catalog to access commands 12
Calculator Home screen ... 14
Working with Apps .. 16
Checking status information ... 22
Turning off the Apps desktop.. 23
Using the clock .. 24
Using menus ... 29
Using split screens .. 36
Managing Apps and operating system (OS) versions................. 40
Connecting your TI-89 Titanium to other devices 41
Batteries .. 43

2 Previews...47
Performing Computations ... 47
Symbolic Manipulation .. 50
Constants and Measurement Units ... 52
Basic Function Graphing I ... 53
Basic Function Graphing II .. 55
Parametric Graphing .. 56
Polar Graphing .. 58
Sequence Graphing ... 59
3D Graphing .. 61
Differential Equation Graphing .. 63
Additional Graphing Topics ... 66
Tables .. 67
Split Screens .. 68
Data/Matrix Editor.. 70
Statistics and Data Plots .. 71
Programming ... 77
Text Operations ... 79
Numeric Solver ... 81
Number Bases ... 82
Memory and Variable Management .. 84
iii

3 Activities.. 89
Analyzing the Pole-Corner Problem.. 89
Deriving the Quadratic Formula .. 90
Exploring a Matrix .. 92
Exploring cos(x) = sin(x).. 93
Finding Minimum Surface Area of a Parallelepiped94
Running a Tutorial Script Using the Text Editor..........................95
Decomposing a Rational Function... 97
Studying Statistics: Filtering Data by Categories 99
CBL 2™ Program for the TI-89 Titanium102
Studying the Flight of a Hit Baseball...103
Visualizing Complex Zeros of a Cubic Polynomial105
Solving a Standard Annuity Problem ..107
Computing the Time-Value-of-Money108
Finding Rational, Real, and Complex Factors............................ 110
Simulation of Sampling without Replacement......................... 110
Using Vectors to Determine Velocity...111

4 Connectivity .. 115
Connecting Two Units .. 115
Transmitting Variables, Flash Applications, and Folders117
Transmitting Variables under Program Control........................121
Upgrading the Operating System (OS)......................................123
Collecting and Transmitting ID Lists .. 126
Compatibility among the TI-89 Titanium, Voyage™ 200,

TI-89, and TI-92 Plus .. 128

5 Memory and Variable Management 131
Checking and Resetting Memory... 131
Displaying the VAR-LINK Screen .. 132
Manipulating Variables and Folders with VAR-LINK134
Pasting a Variable Name to an Application142
Archiving and Unarchiving a Variable....................................... 143
If a Garbage Collection Message Is Displayed...........................144
Memory Error When Accessing an Archived Variable 147

A Appendix A: Functions and Instructions 149
Quick-Find Locator.. 150
Alphabetical Listing of Operations..154

B Appendix B: General Information................................ 279
Texas Instruments Support and Service279
Texas Instruments (TI) Warranty Information280

Index.. 283
iv

Introduction

The TI-89 Titanium graphing calculator
This guidebook provides information about a powerful, advanced
graphing calculator available from Texas Instruments: the TI-89 Titanium.

Your TI-89 Titanium comes equipped with a variety of preinstalled
software applications (Apps) that have features relevant to many
different subjects and curriculums.

Using Flash read-only memory (ROM) for the TI-89 Titanium (4 megabytes
[MB] available), you can install additional Apps and increase the
capabilities of your calculator. Installing Apps and operating system (OS)
upgrades is like installing software on a computer. All you need is
TI Connect™ software and a TI Connectivity Cable.

The TI-89 Titanium graphical user interface (GUI) and configurable Apps
desktop make it easy to organize Apps into categories that you create.

Extend the reach of your TI-89 Titanium with accessories, such as the
Calculator-Based Laboratory™ (CBL 2™) systems, Calculator-Based
Ranger™ (CBR™) system, TI-Presenter™ video adapter, and
TI ViewScreen overhead panel.

The CBL 2 and CBR systems offer static and real-world data collection.
Use the TI-Presenter video adapter to connect the TI-89 Titanium to video
display/recording devices, such as TVs, VCRs, video cameras, and
computer projectors. The TI ViewScreen overhead panel lets you project
an enlarged image of the TI-89 Titanium display so an entire class can
view it.

How to use this guidebook
We’ve added conventions to make it easier for you to get the most out of
this guidebook.

• Key symbols appear throughout the guidebook.

• Many keys can perform more than one function. To use secondary
functions, which are printed above the keys, you must first press 2,
j, or ¹. These extra functions are printed within brackets in this
guidebook.

For example, a procedure might include this key sequence used to
display a menu of special characters:

Press 2 ¿. (Press and release the 2 key, then press the ¿
key, which is the second function of the « key.)
Introduction v

• Key commands that require you to press and hold two keys at the
same time are indicated by the phrase press and hold. For example,
the instruction to darken the display contrast is:

Press and hold 8 and tap «.

• Your graphing calculator uses menus to access many operations.
Menu options often can be selected using one of two methods. For
example,

Press „ 9:Trig

means that you can choose the Trig option first by pressing „ and
then either pressing the 9 key or pressing D as many times as
required to select Trig, and then pressing ¸.

The chapters in this guidebook include:

Getting Started – Offers students and educators in all curriculums a
quick overview of the basic operations of the TI-89 Titanium.

Previews – A set of short examples that include step-by-step procedures,
actual keystrokes, and sample displays.

Activities – A set of longer examples that shows how to solve, analyze,
and visualize actual mathematical problems.

Connectivity – How to link your graphing calculator to another
calculator or to a computer using either the USB or the I/O port, with
details about how to transmit variables and applications, and how to
upgrade the operating system.

Memory and Variable Management – How to manage variables
stored in your graphing calculator’s memory and in the data archive, a
protected area of memory separate from RAM (random access memory).

Technical Reference – Includes the syntax and action of each function
and instruction included in the operating system, an alphabetical listing
of operations, error messages, and other reference information.

The remainder of the product information is available in electronic form.
This comprehensive set of electronic chapters is included on the CD-ROM
that came with your TI-89 Titanium. This same information is also
available online as a free download at:
education.ti.com/guides
vi Introduction

1

Getting Started

Initial start-up

Installing the AAA Batteries
The TI-89 Titanium uses four AAA alkaline batteries and a backup silver
oxide battery (SR44SW or 303). The backup batteries are already
installed, and the AAA batteries are provided with the product.

1. Remove the battery cover from the back of the calculator.

2. Unwrap the four AAA batteries provided with your product and
insert them in the battery compartment. Arrange the batteries
according to the polarity (+ and -) diagram in the battery
compartment.

3. Replace the battery cover on the calculator. The cover should snap
into place.

Turning on your TI-89 Titanium for the first time
After installing the batteries included with the calculator, press ´. The
Apps desktop appears.
Getting Started 1

Note: If your calculator initializes the preinstalled Apps, a progress bar
will appear with the message “Installation in progress . . . Do
not interrupt!” instead of the Apps desktop. To avoid losing Apps, do
not remove the batteries during initialization. (You can re-install Apps
from either the Product CD-ROM or education.ti.com.)

Adjusting the contrast

The Apps desktop
The Apps desktop is the starting point for operating your TI-89 Titanium.
Your installed Apps appear on the Apps desktop as icons organized in
categories for easy access. From the Apps desktop, you can:

• Open Apps.

• Select and edit categories of Apps.

• View all of the Apps installed on your calculator.

• View the full name of the highlighted App.

• View and edit the time and date.

• Check status line information.

• View split-screen mode information.

TI-89 Titanium Apps desktop

Progress bar

• To lighten the display, press and hold 8 and tap |.

• To darken the display, press and hold 8 and tap «.
CHAR

VAR-LINK

Ë

Ì

Ê

Ï

Î
Í

2 Getting Started

http://www.education.ti.com
http://www.education.ti.com

Ê View full name of highlighted App.

Ë View time and date.

Ì Press ¸ to open highlighted App.

Í Scroll down to view additional Apps.

Î Check status line information.

Ï Edit categories.

To return to the Apps desktop at any time, press O. The last category
selected appears with the last open App highlighted.

Turning off the calculator
Press 2 ®. The next time you turn on the calculator, the Apps
desktop appears with the same settings and memory contents retained.
(If you turned off the Apps desktop, the calculator Home screen appears.)

You can use either of the following keys to turn off the TI-89 Titanium.

Note: ® is the second function of the ´ key.

The calculator’s Automatic Power Down™ (APD™) feature prolongs
battery life by turning the calculator off automatically following several
minutes of inactivity. When you turn on the calculator after APD:

• The display, cursor, and any error conditions are exactly the same as
before APD.

• All settings and memory contents are retained.

Press: Description

2 ® (press 2
and then press ®)

Settings and memory contents are retained
by the Constant Memory™ feature.

• You cannot, however, use 2 ® if an
error message is displayed.

• When you turn the TI-89 Titanium on
again, it displays either the Home screen
or the Apps desktop (regardless of the
last application you used).

¥ ® (press ¥
and then press ®)

Similar to 2 ® except:

• You can use ¥ ® if an error message is
displayed.

• When you turn the TI-89 Titanium on
again, it will be exactly as you left it.
Getting Started 3

Note: APD does not function when a calculation or program is in
progress, unless a pause is specified in the calculation or program.

TI-89 Titanium keys

TI-89 Titanium keys
Ê Function keys (ƒ– Š) open toolbar menus, access Apps, and edit
categories of Apps.

Ë Cursor keys (A, B, C, D) move the cursor.

Ì Numeric keypad performs math and scientific functions.

Í Modifier keys (2, 8, 7) add features by increasing the number of
key commands.

Ë

Ì

Í

Ê

4 Getting Started

Entering special characters
Use the CHAR (Character) menu and key commands to enter special
characters. The CHAR menu lets you access Greek, math, international,
and other special characters. An on-screen keyboard map shows the
locations of shortcuts used to enter other commonly used characters.

To select characters from the CHAR menu:

1. Press 2 G. The CHAR menu appears.

2. Use the cursor keys to select a category. A submenu lists the
characters in that category.

3. Use the cursor keys to select a character, and press ¸.

Example: Enter the right arrow symbol (→) in the Text Editor.

To open the keyboard map, press 8 ”. The keyboard map appears.

Press Result

2 G

4

9

– or –

Press D repeatedly to
select 9:→

and press ¸

Scroll down for more
characters.

Symbol displayed at cursor
location.
Getting Started 5

To type most characters, press 2 and the corresponding key. Press N
to close the map.

Example: Use the keyboard map to find the “not equal to” symbol (ƒ)
shortcut and enter the symbol in the Program Editor.

Modifier keys
Modifier keys add features by increasing the number of keyboard
operations at your fingertips. To access a modifier function, press a
modifier key and then press the key for the corresponding operation.

Press Result

8 ”

¥ Á

Keys Description

2
(Second)

Accesses Apps, menu options, and other
operations. Second functions are printed
above their corresponding keys in the same
color as the 2 key.

8
(Diamond)

Accesses Apps, menu options, and other
operations. Diamond functions are printed
above their corresponding keys in the same
color as the 8 key.

¤
(Shift)

Types an uppercase character for the next
letter key you press. Also used with A and B
to highlight characters when editing.

Symbol displayed
at cursor location.
6 Getting Started

Example: Access the VAR-LINK [All] screen, where you can manage
variables and Apps.

Function keys
Use the function keys to perform the following operations:

• On the Apps desktop, open Apps and select or edit Apps categories.

• On the calculator Home screen, open toolbar menus to select math-
related operations.

• Within Apps, open toolbar menus to select App options.

Numeric keypad
The numeric keypad lets you enter positive and negative numbers.

To enter a negative number, press ? before typing the number.

Note: Don’t confuse the negation key (?) with the subtraction key (|).

To enter a number in scientific notation:

1. Type the numbers that precede the exponent. (This value can be an
expression.)

2. Press 2 ^. The exponent symbol (í) follows the numbers you
entered.

3. Type the exponent as an integer with up to three digits. (As the
following example shows, you can use a negative exponent.)

j
(Alpha)

Lets you type alphabetic characters without a
QWERTY keypad. Alpha characters are
printed above their corresponding keys in the
same color as the j key.

Press Result

2 °

Keys Description
Getting Started 7

Example: On the calculator Home screen, enter 0.00685 using scientific
notation.

Other important keys

Press Result

6 ¶ 8 5

 ^

? 3

¸

Key Command Description

8 # Displays the Y= Editor.

8 $ Displays the Window Editor.

8 % Displays the Graph screen.

8 & Sets parameters for the Table
screen.

8 ' Displays the Table screen.

¥ 5

¥ 6

¥ 7

These keys let you edit entered
information by performing a cut,
copy, or paste operation.

O Displays the Apps desktop.

8 O With the Apps desktop off,
displays the FLASH
APPLICATIONS menu.

2 a Switches between the last two
chosen Apps.
8 Getting Started

2 ¾ Turns the custom menu on and
off.

2 4 Converts measurement units.

¥  Designates a measurement unit.

0 Deletes the character to the left
of the cursor (backspace).

8 . Deletes the character to the
right of the cursor.

2 / Switches between insert and
overwrite modes.

2 ¯ Displays the MEMORY screen.

½ Displays a list of commands.

2 £ Recalls the contents of a
variable.

§ Stores a value to a variable.

2 G Displays the CHAR menu, which
lets you select Greek letters,
international accented
characters, and other special
characters..

2 K • In full-screen mode, displays
the Apps desktop.

• In split-screen mode,
displays the full-screen view
of the active App.

• With the Apps desktop off,
displays the calculator Home
screen.

Key Command Description
Getting Started 9

Mode settings
Modes control how the TI-89 Titanium displays and interprets
information. All numbers, including elements of matrices and lists, are
displayed according to the current mode settings. When the TI-89
Titanium is turned off, the Constant Memory™ feature retains all of the
mode settings you have selected.

To view the TI-89 Titanium mode settings:

1. Press 3. Page 1 of the MODE dialog box appears.

2. Press „ or … to display the modes listed on Page 2 or Page 3.

Note: Modes that are grayed out are available only if other required
mode settings are selected. For example, the Custom Units mode listed
on Page 3 is available only if the Unit System mode is set to CUSTOM.

Viewing mode settings

Press Result

3

ã„

…

10 Getting Started

Changing mode settings
Example: Change the Language mode setting to Spanish (Español).

Press Result

3

…

Scroll down to the Language
field.

D

Press B
and then press D until

3:Español is highlighted.

Note: Your menu list might
vary, depending on the
languages installed.

¸

Getting Started 11

To return the Language mode setting to English, repeat the steps,
selecting 1:English in the Language field.

Using the Catalog to access commands
Use the Catalog to access a list of TI-89 Titanium commands, including
functions, instructions, and user-defined programs. Commands are listed
alphabetically. Commands not beginning with a letter are found at the
end of the list (&, /, +, –, etc.).

The Catalog Help App includes details about each command.

Options not currently valid are grayed out. For example, the Flash Apps
(…) menu option is grayed out if no Flash applications are installed on
your TI-89 Titanium; the User-Defined (†) menu option is grayed out if
you have not created a function or program.

Note: Typing a letter takes you to the first command in the list starting
with the same letter.

¸

Note: The previous open App
appears (in this example, the
calculator Home screen).

Press Result

½

(displays Built-in commands)

…

(displays Flash Apps
commands, if any)

Press Result
12 Getting Started

Select commands from the Catalog and insert them onto the calculator
Home screen entry line or paste them to other Apps, such as the
Y= Editor, Text Editor, or CellSheet Apps.

Example: Insert the comDenom(command on the calculator Home
screen entry line.

Note: Before selecting a command, position the cursor where you want
the command to appear.

Pressing 2 D advances the Catalog list one page at a time.

The status line displays any required and optional parameters for the
selected command. Optional parameters appear in square brackets.

Note: Pressing ƒ also displays the parameters for the selected
command.

†

(displays User-Defined
commands, if any)

Press Result

½ j C

2 D

Then press D until the pointer
is at the comDenom(function.

¸

Press Result
Getting Started 13

To exit the Catalog without selecting a command, press N.

Calculator Home screen
The calculator Home screen is the starting point for math operations,
including executing instructions, evaluating expressions, and viewing
results.

To display the calculator Home screen, press 8 ".

You can also display the calculator Home screen from the Apps desktop
by highlighting the Home icon and pressing ¸.

Ê History area lists the entry/answer pairs entered.

Ë Tabs display menus for selecting lists of operations. Press ƒ, „, and
so on to display menus.

Ì Result of last entry is displayed here. (Note that results are not
displayed on the entry line.)

Í Status line shows the current state of the calculator.

Î Entry line displays your current entry.

Selected
command

Command
parameters

Brackets [] indicate optional parameters

Ê Ë

Ï

Î

Í

Ì

14 Getting Started

Ï Your last entry is displayed here.

To return to the Apps desktop from the calculator Home screen, press
O.

About the history area
The history area displays up to eight entry/answer pairs, depending on
the complexity and height of the expressions. When the display is filled,
information scrolls off the top of the screen. Use the history area to:

• Review previous entries and answers. Use the cursor keys to view
entries and answers that have scrolled off the screen.

• Recall or auto-paste a previous entry or answer onto the entry line to
reuse or edit. (For more information, see the electronic Operating
the Calculator chapter.)

The cursor, which normally rests on the entry line, can be moved into the
history area. The following table shows you how to move the cursor
around in the history area.

Interpreting history information on the status line
Use the history indicator on the status line for information about the
entry/answer pairs. For example:

If the cursor is on the entry line:

To Do this

View entries/answers
scrolled off the screen

From the entry line, press C to highlight the
last answer.

Continue using C to move the cursor from
answer to entry through the history area.

Go to the oldest or
newest entry/answer
pair

If the cursor is in the history area, press 8 C
or 8 D.

View an entry or answer
too long for one line (œ
is displayed at the end
of the line)

Move the cursor to the entry or answer. Use A
or B to scroll left or right and 2 A or 2 B
to go to the beginning or end.

Return cursor to the
entry line

Press N, or press D until the cursor is back
on the entry line.

Total number of pairs
currently saved

________ 8/30 _______ Maximum number of
pairs that can be saved
Getting Started 15

If the cursor is in the history area:

Modifying the history area
To change the number of pairs that can be saved:

1. From the calculator Home screen, press ƒ and select 9:Format.

2. Press B and use C or D to highlight the new number.

3. Press ¸ ¸.

To clear the history area and delete all saved pairs:

• From the calculator Home screen, press ƒ and select 8:Clear Home.

– or –

• Enter ClrHome on the calculator Home screen entry line.

To delete an entry/answer pair, move the cursor to either the entry or
answer, and press 0 or M.

Working with Apps
The TI-89 Titanium organizes Apps by category on the Apps desktop. To
select a category, press a function key („ through 2 Š). The App
icons for the selected category appear on the Apps desktop.

Note: If the name under an Apps desktop icon is truncated, use the
cursor keys to highlight the icon. Now view the full name at the top of
the Apps desktop.

Opening Apps
Use the cursor keys to highlight the Apps icon on the Apps desktop and
press ¸. The App either opens directly or displays a dialog box. The
most common dialog box lists these options for the App:

Note: The TI-89 Titanium uses the general term variable to refer to the
App data files that you create.

Pair number of the
highlighted

entry/answer

_______ 8/30 _______ Total number of pairs
currently saved

Option Description

Current Returns the screen displayed when you last
viewed the App. If no current App variable exists,
the New dialog box appears.

Open Lets you open an existing file.
16 Getting Started

Select an option, enter any required information, and press ¸. The
App appears.

Example: Create a new program using the Program Editor.

New Creates a new file with the name typed in the
field.

Press Result

Use cursor keys to highlight

¸

3

¸

D D

p r o g r a m 1

Option Description
Getting Started 17

The newly created program variable, program1, is saved to the Main
folder.

Returning to the Apps desktop from within an App
Press O. The icons for the last Apps category selected appear on the
Apps desktop with the icon for the last App opened highlighted.

You can also return to the Apps desktop by pressing 2 K in full-
screen mode. In split-screen mode, press 2 K twice.

To return to the last open App from the Apps desktop, press 2 a.

Selecting an Apps category
On the TI-89 Titanium, the Apps category names appear only in the F1
Menu. To select an Apps category, press ƒ 2:Select Category and use
the cursor keys to highlight an Apps category, and then press ¸ to
select the highlighted category. You can also use the function key
shortcuts to select a category from the keypad (use the 2 key if
necessary). The App icons for the selected category appear on the Apps
desktop.

The App icons for the selected category appear on the Apps desktop.

¸ ¸

Key Description

„ All Icons for all installed Apps displayed. Not
customizable.

… English Customizable category. English is the default.

† SocialSt Customizable category. SocialSt (social
studies) is the default.

‡ Math Customizable category. Math is the default.

2 ˆ Graphing Customizable category. Graphing is the
default.

Press Result
18 Getting Started

Example: Select the All category.

If you select an Apps category containing no Apps, a message appears to
confirm that the category is empty and point you to the
ƒ 1:Edit Categories menu, where you can add App shortcuts to the
category. (See “Customizing the Apps categories” on page 19.)

Press ¸ or N to clear the message and return to the Apps desktop.

Customizing the Apps categories
The TI-89 Titanium organizes your Apps into seven categories, six of
which you can customize to fit your individual needs. (The All category
contains every installed App and cannot be edited.)

To customize the … through 2 Š Apps categories:

1. Select ƒ 1:Edit Categories. A submenu displays the six
customizable Apps category names. (The All category is not listed.)

2. Highlight an Apps category and press ¸. The Edit Categories
dialog box appears with a list of installed Apps and a text box with
the category name highlighted.

3. To change the Apps category name, type the desired name.

Note: Enter a name of up to eight characters, including letters with
or without capitalization, numbers, punctuation, and accented
characters.

4. To add or remove an App shortcut from the category, press D as
required to highlight the box next to the App, then press B to add or
remove the check mark ().

2 ‰ Science Customizable category. Science is the default.

2 Š Organizr Customizable category. Organizr (organizer)
is the default.

Press Result

„

Key Description
Getting Started 19

5. To save the changes and return to the Apps desktop, press ¸.

Example: Replace the Social Studies category with the Business category
and add the CellSheet and Finance App shortcuts.

Press Result

ƒ

B

2

– or –

D ¸

2 ™

¤ B u s i n e s s

D
©

B

20 Getting Started

Open Apps and split-screen status
Your TI-89 Titanium lets you split the screen to view two Apps
simultaneously. For example, view the Y= Editor and Graph screens
simultaneously to see the list of functions and how they are graphed.

Select the Split Screen mode from Page 2 of the MODE screen. The TI-89
Titanium displays the selected Apps in the split-screen view as shown.
Split the screen horizontally (top-bottom) or vertically (left-right).

D
©

B

¸

†

Press Result

Top-bottom split screen
Getting Started 21

To return to the Apps desktop, press O. The split-screen status
appears at the top of the Apps desktop with the names of the open Apps
and the portions of the screen in which each is displayed. The
highlighted numeral indicates the split-screen portion where the next
App you open will appear.

Note: The Apps desktop always appears in the full-screen view.

More information is available about using split screens. (For more
information, see the electronic Split Screens chapter.)

Checking status information
Look to the status line, located at the bottom of the screen, for
information about the current state of your TI-89 Titanium.

Indicator Meaning

Ê Current folder Name of the selected folder (MAIN is the
default folder.)

Ë Modifier key Selected modifier key (2, 8, 7), if any.

Ì Angle mode Selected units in which angle values are
displayed and interpreted (RAD, DEG)

Í Exact/Approx
mode

Mode in which answers are calculated and
displayed (AUTO, EXACT, APPROX)

Split-screen status (highlight
indicates the portion where the
next App selected will open.) Names of open Apps

Ê Ë Ì Í Î Ï Ð Ñ Ò
22 Getting Started

Turning off the Apps desktop
You can turn off the Apps desktop from the MODE dialog box. If you do,
open Apps from the APPLICATIONS menu. To open the APPLICATIONS
menu, press O.

Example: Turn off the Apps desktop.

Î Graph number Active of two independent graphs in split-
screen mode (GR#1, GR#2)

Ï Graph mode Selected type of graph that can be plotted
(FUNC, PAR, POL, SEQ, 3D, DE)

Ð Entry/Answer pairs 22/30–Number of entry/answer pairs (default
is 30, maximum is 99) in the history area of
the calculator Home screen.

Ñ Replace batteries Displayed when batteries are low (BATT). If
BATT is highlighted with a black
background, change the batteries as soon as
possible ().

Ò Busy/Pause,
Locked/Archived
variable

BUSY–Calculation or graph is in progress

PAUSE–You paused a graph or program

Œ–Variable opened in the current editor is
locked or archived and cannot be modified

Press Result

3

…

Indicator Meaning
Getting Started 23

To turn on the Apps desktop, repeat the procedure, selecting ON in the
Apps Desktop mode field. To return to the Apps desktop from the
calculator Home screen, press O.

Using the clock
Use the CLOCK dialog box to set the time and date, select the clock
display format, and turn the clock off and on.

The clock is turned on by default. If you turn off the clock, all Clock
dialog box options except Clock ON/OFF are grayed out.

Displaying the CLOCK dialog box
1. Use the cursor keys to highlight the Clock icon on the Apps desktop.

2. Press ¸. The CLOCK dialog box appears with the Time Format
field highlighted.

Note: Because the CLOCK dialog box displays the settings current at the
time you open the dialog box, you might need to update the time before
exiting.

D D B C

¸ ¸

Note: The previous open App
appears (in this example, the
calculator Home screen).

Press Result

6 indicates you can
scroll down for more
options)
24 Getting Started

Setting the time
1. Press B to open the list of time formats.

2. Press C or D to highlight an option, then press ¸. The selected
format appears in the Time Format field.

3. Press D to highlight the Hour field.

4. Type the hour, then press D to highlight the Minute field.

5. Type the minute(s).

6. If the time format is 24 hours, proceed to step 9.

— or —

If the time format is 12 hours, press D to highlight the AM/PM field.

7. Press B to open the list of AM/PM options.

8. Press C or D to highlight an AM/PM option, then press ¸. The
selected AM/PM option appears.

9. Set the date (for procedures, see Setting the date).

— or —

To save your settings and exit, press ¸. The time is updated in the
top right corner of the Apps desktop.

Setting the date
1. Press C or D as required to highlight the Date Format field.

2. Press B to open the list of date formats.

3. Press C or D to highlight an option, then press ¸. The selected
format appears in the Date Format field.

4. Press D to highlight the Year field.

5. Type the year, then press D to highlight the Month field.

6. Press B to open the list of months.

7. Press C or D to highlight an option, then press ¸. The selected
month appears in the Month field.

8. Press D to highlight the Day field.

9. Type the day, then press ¸ ¸ to save your settings and exit.
The date is updated in the top right corner of the Apps desktop.
Getting Started 25

Example: Set the time and date to 19/10/02 (October 19, 2002) at
1:30 p.m.

Press Result

Use cursor keys to highlight

¸

D 1 D

3 0 D

B D

Time and date
26 Getting Started

¸ D

B D

¸ D

2 0 0 2

D B

Press Result
Getting Started 27

Turning off the clock
From the Apps desktop, open the CLOCK dialog box and select OFF in the
Clock field.

Example: Turn off the clock.

Scroll down to October
and press ¸

D 1 9

¸ ¸

Press Result

Use cursor keys to highlight

Press Result

Revised time and date

Clock on
28 Getting Started

To turn on the clock, repeat the procedure, selecting ON in the Clock
field. Remember to reset the time and date.

Using menus
To select most TI-89 Titanium menus, press the function keys
corresponding to the toolbars at the top of the calculator Home screen
and most App screens. Select other menus using key commands.

Toolbar menus
The starting point for TI-89 Titanium math operations, the calculator
Home screen displays toolbar menus that let you choose math-related
options.

Toolbar menus also appear at the top of most App screens. These menus
list common functions of the active App.

¸

Scroll down to the Clock field.

B C ¸

¸

Press Result

Clock off
Getting Started 29

Other menus
Use key commands to select the following menus. These menus contain
the same options regardless of the screen displayed or the active App.

Selecting menu options
• Press the number or letter to the left of the option you want to

select.

— or —

• Press C or D to select the option, and press ¸.

Note: If the first menu option is selected, press C to select the last
option on the menu. If the last menu option is selected, press D to select
the first option on the menu.

Press To display

2 G CHAR menu. Lists characters not available on the
keyboard; characters are organized by category
(Greek, math, punctuation, special, and
international).

2 I MATH menu. Lists math operations by category.

O APPLICATIONS menu. Lists the installed Apps.
(Menu is available only when the Apps desktop is
turned off; Apps are normally accessed from the
Apps desktop.)

8 O FLASH APPLICATIONS menu. Lists the installed
Flash Apps. (Menu is available only when Apps
desktop is turned off; Flash Apps are normally
accessed from the Apps desktop.)
30 Getting Started

Example: Select factor(from the Algebra menu on the calculator
Home screen.

Selecting submenu options
A small arrow symbol (ú) to the right of a menu option indicates that
selecting the option will open a submenu.

Press Result

Press:

"

– or –

From the Apps desktop, use the
cursor keys to highlight

and press ¸

„

2

– or –

D ¸

6 indicates Algebra
menu will open
when you press „.

$ points to additional
options.
Getting Started 31

Example: Select ord(from the MATH menu on the calculator Home
screen.

Using dialog boxes
An ellipsis (…) at the end of a menu option indicates that choosing the
option will open a dialog box. Select the option and press ¸.

Press Result

2 I

C

– or –

C C B

B

– or –

C ¸
32 Getting Started

Example: Open the SAVE COPY AS dialog box from the Window
Editor.

Note: Pressing the 8 S key shortcut also opens the SAVE COPY AS dialog
box in most Apps.

Canceling a menu
To cancel a menu without making a selection, press N.

Moving among toolbar menus
To move among the toolbar menus without selecting a menu option:

• Press the function key (ƒ through Š) of a toolbar menu.

• Press a function key, then press B or A to move from one toolbar
menu to the next. Press B from the last menu to move to the first
menu, and vice versa.

Press Result

O

Use the cursor keys to
highlight

and press ¸

ƒ

2

– or –

D ¸ N

Press B to display a
list of folders.

Type the name of
the variable.

Press ¸ twice to save and then
close the dialog box.
Getting Started 33

Note: If you press B when a menu option with a submenu is selected,
the submenu will appear instead of the next toolbar menu. Press B again
to move to the next menu.

More information is available about menus. (See the electronic
Operating the Calculator chapter.)

Custom menu
The custom menu provides quick access to your most commonly used
options. Use the default custom menu or create your own using the
Program Editor. You can include any available TI-89 Titanium command
or character.

The custom menu replaces the standard toolbar menu on the calculator
Home screen. (For details on creating a custom menu, see the electronic
Programming chapter.) More information is available about custom
menus. (See the electronic Operating the Calculator chapter.)

Example: Turn on and turn off the custom menu from the calculator
Home screen.

Example: Restore the default custom menu.

Press Result

2 F

2 F

Default custom menu

Normal toolbar menu
34 Getting Started

Note: Restoring the default custom menu erases the previous custom
menu. If you created the previous custom menu with a program, you can
run the program again to reuse the menu.

Opening Apps with the Apps desktop turned off
If you turn off the Apps desktop, use the APPLICATIONS menu to open
Apps. To open the APPLICATIONS menu with the Apps desktop off, press
O.

Note: If you press O with the Apps desktop turned on, the Apps
desktop will appear instead of the APPLICATIONS menu.

Press Result

2 F

(to turn off the custom menu
and turn on the standard

toolbar menu)

 2 ˆ

3

– or –

D D ¸

¸

Getting Started 35

Example: With the Apps desktop turned off, open the Window Editor
from the APPLICATIONS menu.

To access Apps not listed on the APPLICATIONS menu, select 1:FlashApps.

Using split screens
The TI-89 Titanium lets you split the screen to show two Apps at the same
time. For example, display both the Y= Editor and Graph screens to
compare the list of functions and how they are graphed.

Setting split-screen mode
You can split the screen either top to bottom or left to right from the
MODE dialog box. The split-screen setting stays in effect until you change
it.

1. Press 3 to display the MODE dialog box.

2. Press „ to display the Split Screen mode setting.

3. Press B to open the Split Screen mode menu.

4. Press D as required to highlight either TOP-BOTTOM or LEFT-RIGHT.

5. Press ¸. The Split Screen mode setting displays the option you
selected.

Press Result

O

3

– or –

D D ¸
36 Getting Started

Example: Set split-screen mode to TOP-BOTTOM.

Press Result

3

„

B D

¸

¸

Getting Started 37

Setting the initial Apps for split screen
After you select either TOP-BOTTOM or LEFT-RIGHT split-screen mode,
additional mode settings become available.

To set the initial App for each split-screen portion:

1. Select the Split 1 App mode setting and press B to display a menu of
available Apps. (See “Setting split-screen mode” on page 36.)

2. Press D or C to highlight the App and press ¸.

3. Repeat steps 1 and 2 for the Split 2 App mode setting.

Example: Display the Y= Editor in the top screen and the Graph App in
the bottom screen.

Mode Description

Split 2 App Lets you specify the App displayed in the bottom
or right portion of the split screen. Works
together with Split 1 App, which lets you specify
the App displayed in the top or left portion of the
split screen.

Number of Graphs Lets you set up and display two independent
graphs.

Press Result

D B

Full-screen mode Split-screen mode
38 Getting Started

If you set Split 1 App and Split 2 App to the same nongraphing App or to
the same graphing App with Number of Graphs set to 1, the TI-89
Titanium exits split-screen mode and displays the App in full-screen
mode.

Selecting the active App
In split-screen mode, only one App can be active at a time.

• To switch between active Apps, press 2 a.

• To open a third App, press O and select the App. This App
replaces the active split-screen App.

Exiting split-screen mode
Exit split-screen mode in any of the following ways:

2

D B

4

¸

Press Result
Getting Started 39

• Press 2 K to close the active App and display the full-screen
view of the other open App.

• If the Apps desktop is turned off, pressing 2 K replaces the
active split-screen App with the calculator Home screen. Pressing
2 K again turns off the split-screen mode and displays the
calculator Home screen in full-screen mode.

• Select Split Screen on Page 2 of the MODE dialog box, set split-screen
mode to FULL, and press ¸.

• Press 2 K twice to display the Apps desktop

More information is available about using split screens. (See the
electronic Split Screens chapter.)

Managing Apps and operating system (OS)
versions
Using the TI-89 Titanium connectivity features, you can download Apps
from:

• The TI Educational & Productivity Solutions (E&PS) Web site at:
education.ti.com/latest

• The CD-ROM included with your TI-89 Titanium.

• A compatible graphing calculator.

Adding Apps to your TI-89 Titanium is like loading software on a
computer. All you need is TI Connect software and the USB computer
cable that came with your TI-89 Titanium.

For system requirements and instructions to link to compatible
calculators and download TI Connect software, Apps, and OS versions,
see the TI E&PS Web site.

Before downloading Apps to your TI-89 Titanium, please read the license
agreement on the CD-ROM or TI Web site.

Finding the OS version and identification (ID) numbers
If you purchase software from the TI E&PS Web site or call the customer
support number, you will be asked to provide information about your
TI-89 Titanium. You will find this information on the ABOUT screen.

To display the ABOUT screen, press ƒ 3:About from the Apps desktop.
The ABOUT screen displays the following information about your TI-89
Titanium:
40 Getting Started

http://education.ti.com/latest

Ê OS version

Ë Hardware version

Ì Unit ID (required to obtain certificates for installing purchased Apps).
Similar to a serial number. Write this number down and keep it in a safe
place in case the calculator is ever lost or stolen.

Í Apps certificate revision number (Cert. Rev.)

Î Product identifier (Product ID). Similar to a model number.

Note that your screen will be different than the one shown above.

Deleting an Application
Deleting an application removes it from the TI-89 Titanium and increases
space for other applications. Before deleting an application, consider
storing it on a computer for reinstallation later.

1. Quit the application.

2. Press 2 ° to display the VAR-LINK (All) screen.

3. Press 2 ‰ to display the list of installed applications.

4. Select the application you want to delete by pressing †. (Press †
again to deselect.)

5. Press ƒ 1:Delete. The VAR-LINK delete confirmation dialog box
displays.

6. Press ¸ to delete the application.

Note: Only Flash Apps can be deleted.

Connecting your TI-89 Titanium to other devices
The TI-89 Titanium includes both a mini-USB port and a standard I/O port.
Ports are used to link two compatible graphing calculators or connect to
a computer or peripheral device.

Ë

Ì

Ê

Î

Í

Getting Started 41

In addition, the teacher model of the TI-89 Titanium includes an
accessory port. This port is used to output visual data so that a classroom
can view the calculator’s display on a video device or overhead screen.

To connect your calculator to a computer – Connect your TI-89
Titanium using the USB port and the included USB computer cable.

To connect your calculator to another calculator – Use the USB
unit-to-unit cable or an I/O unit-to-unit cable to connect the TI-89
Titanium to a compatible graphing calculator or peripheral device, such
as a TI-89 or TI-92 Plus graphing calculator or the CBL 2™ and CBR™
systems.

To show your calculator’s display to the classroom – Use the
accessory port to connect the TI-Presenter™ video adapter to the teacher
model of the TI-89 Titanium. The TI-Presenter video adapter provides a
video interface between the calculator and video display or recording
devices. Or use the accessory port to connect the TI ViewScreen
overhead panel to your calculator. The TI ViewScreen overhead panel
enlarges and projects the display so an entire class can view it. For more
information about the TI-Presenter video adapter and TI ViewScreen
panel, see the TI E&PS Web site at education.ti.com.

I/O portUSB port

TI-89 Titanium ports

Accessory port

I/O portUSB port

TI-89 Titanium ports (teacher model)
42 Getting Started

http://www.education.ti.com
http://www.education.ti.com
http://www.education.ti.com
http://www.education.ti.com
http://www.education.ti.com

Batteries
The TI-89 Titanium uses four AAA alkaline batteries and a backup silver
oxide battery (SR44SW or 303). The backup battery is already installed,
and the AAA batteries are provided with your product.

Installing the AAA Batteries
1. Remove the battery cover from the back of the calculator.

2. Unwrap the four AAA batteries provided with your product and
insert them in the battery compartment. Arrange the batteries
according to the polarity (+ and -) diagram in the battery
compartment.

3. Replace the battery cover on the calculator. The cover should snap
into place.

Replacing the AAA (alkaline) batteries
As the batteries lose power, the display begins to dim, especially during
calculations. If you find yourself increasing the contrast frequently,
replace the AAA alkaline batteries.

The status line also gives battery information.

Before replacing the batteries, turn off the TI-89 Titanium by
pressing 2 ® to avoid losing information stored in memory. Do not
remove both the back-up battery and the AAA alkaline batteries at the
same time.

Indicator Meaning

Batteries are low.

Replace batteries as soon as possible.
Getting Started 43

Replacing the backup (silver oxide) battery
1. To replace the silver oxide backup battery, remove the battery cover

and unscrew the tiny screw holding the BACK UP BATTERY cover in
place.

2. Remove the old battery and install a new SR44SW or 303 battery,
positive (+) side up. Replace the cover and the screw.

Important OS download information
New batteries should be installed before beginning an OS download.

When in OS download mode, the APD feature does not function. If you
leave your calculator in download mode for an extended time before you
actually start the download, your batteries may become depleted. You
will then need to replace the depleted batteries with new batteries
before downloading.

You can also transfer the OS to another TI-89 Titanium using a USB
unit-to-unit cable . If you accidentally interrupt the transfer before it is
complete, you will need to reinstall the OS via a computer. Again,
remember to install new batteries before downloading.

Please contact Texas Instruments as described in Service & Support
Information, if you experience a problem.

Battery Precautions
Take these precautions when replacing batteries:

• Do not leave batteries within the reach of children.
44 Getting Started

• Do not mix new and used batteries. Do not mix brands (or types
within brands) of batteries.

• Do not mix rechargeable and non-rechargeable batteries.

• Install batteries according to polarity (+ and –) diagrams.

• Do not place non-rechargeable batteries in a battery recharger.

• Properly dispose of used batteries immediately.

• Do not incinerate or dismantle batteries.
Getting Started 45

46 Getting Started

2

Previews

Performing Computations
This section provides several examples for you to perform from the
Calculator Home screen that demonstrate some of the computational
features of the TI-89 Titanium. The history area in each screen was
cleared by pressing ƒ and selecting 8:Clear Home, before performing
each example, to illustrate only the results of the example’s keystrokes.

Showing Computations

Finding the Factorial of Numbers

Steps and keystrokes Display

Compute sin(p/4) and display the result in
symbolic and numeric format. To clear the
history area of previous calculations, press ƒ
and select 8:Clear Home.

@ 2 W 2 T e 4 d ¸ 8 ‘

Steps and keystrokes Display

Compute the factorial of several numbers to see
how the TI-89 Titanium handles very large
integers. To get the factorial operator (!), press
2 I, select 7:Probability, and then select
1:!.

@ 5 2 I 7 1 ̧ 20 2 I 7 1 ̧
30 2 I 7 1 ¸
Previews 47

Expanding Complex Numbers

Finding Prime Factors

Expanding Expressions

Reducing Expressions

Steps and keystrokes Display

Compute (3+5i)3 to see how the TI-89 Titanium
handles computations involving complex
numbers.

Press c 3 « 5 2) d Z 3 ¸

Steps and keystrokes Display

Compute the factors of the rational number
2634492. You can enter “factor” on the entry
line by typing FACTOR on the keyboard, or by
pressing „ and selecting 2:factor(.

Press „ 2 2634492 d ¸

(Optional) Enter other numbers on your own.

Steps and keystrokes Display

Expand the expression (xN5)3. You can enter
“expand” on the entry line by typing EXPAND
on the keyboard, or by pressing „ and selecting
3:expand(.

Press „ 3 c X | 5 d Z 3 d ¸

(Optional) Enter other expressions on your own.

Steps and keystrokes Display

Reduce the expression (x2N2xN5)/(xN1) to its
simplest form. You can enter “propFrac” on the
entry line by typing PROPFRAC on the keyboard,
or by pressing „ and selecting 7:propFrac(.

Press „ 7 c X Z 2 | 2 X | 5 d e c X | 1 d
d ¸
48 Previews

Factoring Polynomials

Solving Equations

Solving Equations with a Domain Constraint

Steps and keystrokes Display

Factor the polynomial (x2N5) with respect to x.
You can enter “factor” on the entry line by
typing FACTOR on the keyboard or by pressing
„ and selecting 2:factor(.

Press „ 2 X Z 2 | 5 b X d ¸

Steps and keystrokes Display

Solve the equation x2N2xN6=2 with respect to x.

You can enter “solve(” on the entry line by
selecting “solve(” from the Catalog menu, by
typing SOLVE(on the keyboard, or by pressing
„ and selecting 1:solve(.

The status line area shows the required syntax
for the marked item in the Catalog menu.

Press „ 1 X Z 2 | 2 X | 6 Á 2 b X d ¸

Steps and keystrokes Display

Solve the equation x2N2xN6=2 with respect to x
where x is greater than zero. The “with” (I)
operator provides domain constraint.

@ „ 1 X Z 2 | 2 X | 6 Á 2 b X d Í X 2
Ã 0 ¸
Previews 49

Finding the Derivative of Functions

Finding the Integral of Functions

Symbolic Manipulation
Solve the system of equations 2x N 3y = 4 and Lx + 7y = L12. Solve the first
equation so that x is expressed in terms of y. Substitute the expression for
x into the second equation, and solve for the value of y. Then substitute
the y value back into the first equation to solve for the value of x.

Steps and keystrokes Display

Find the derivative of (xNy)3/(x+y)2 with respect
to x.

This example illustrates using the calculus
differentiation function and how the function is
displayed in “pretty print” in the history area.

Press 2 = c X | Y d Z 3 e c X « Y d Z
2 b X d ¸

Steps and keystrokes Display

Find the integral of x…sin(x) with respect to x.

This example illustrates using the calculus
integration function.

@ 2 < X p 2 W X d b X d ¸

Steps and keystrokes Display

1. Display the Home screen and clear the entry
line. Solve the equation 2x N 3y = 4 for x.

„ 1 selects solve(from the Algebra menu.
You can also type solve(directly from the
keyboard or select it from the Catalog.

@ " M M „ 1 2 X | 3 Y Á 4
b X d ¸

2. Begin to solve the equation Lx + 7y = L12 for
y, but do not press ¸ yet.

Press „ 1 ? X « 7 Y Á ? 12 b Y d
50 Previews

This example is a demonstration of symbolic manipulation. A one-step
function is available for solving systems of equations.

3. Use the “with” operator to substitute the
expression for x that was calculated from
the first equation. This gives the value of y.

The “with” operator is displayed as | on the
screen.

Use the auto-paste feature to highlight the
last answer in the history area and paste it
to the entry line.

@ Í C ¸ ¸

4. Highlight the equation for x in the history
area.

Press C C C

5. Auto-paste the highlighted expression to
the entry line. Then substitute the value of y
that was calculated from the second
equation.

@ ¸ Í C ¸ ¸

The solution is:
x = L8/11 and y = L20/11

Steps and keystrokes Display
Previews 51

Constants and Measurement Units
Using the equation f = m…a, calculate the force when m = 5 kilograms
and a = 20 meters/second2. What is the force when a = 9.8
meters/second2. (This is the acceleration due to gravity, which is a
constant named _g). Convert the result from newtons to kilograms of
force.

Steps and keystrokes Display

1. Display the MODE dialog box, Page 3. For
Unit System mode, select SI for the metric
system of measurements.

Results are displayed according to these
default units.

Press 3 … B 1 ¸

2. Create an acceleration unit for

meters/second2 named _ms2.

The UNITS dialog box lets you select units
from an alphabetical list of categories. You
can use 2 D and 2 C to scroll one page
at a time through the categories.

If you use the UNITS dialog box to select a
unit, the _ is entered automatically. Now,
instead of re-entering _m/_s2 each time you
need it, you can use _ms2. Also, you can
now use the UNITS dialog box to select
_ms2 from the Acceleration category.

@ 2 À D B M ¸ e 2 À D
D D D B S ¸ Z 2 9 8 5 2
™ MS j 2 ¸

3. Calculate the force when
m = 5 kilograms (_kg) and

a = 20 meters/second2 (_ms2).

If you know the abbreviation for a unit, you
can type it from the keyboard.

@ 5 8 5 2 ™ KG j p 20 8 5
2 ™ MS j 2 ¸
52 Previews

Basic Function Graphing I
The example in this section demonstrates some of the graphing
capabilities of the TI-89 Titanium keystrokes. It illustrates how to graph a
function using the Y= Editor. You will learn how to enter a function,
produce a graph of the function, trace a curve, find a minimum point,
and transfer the minimum coordinates to the Home screen.

Explore the graphing capabilities of the TI-89 Titanium by graphing the
function y=(|x2N3|N10)/2.

4. Using the same m, calculate the force for an
acceleration due to gravity (the constant
_g).

For _g, you can use the pre-defined
constant available from the UNITS dialog
box or you can type _g.

@ 5 8 5 2 ™ KG j p 2 À
B j G ¸ ¸

5. Convert to kilograms of force (_kgf).

2 4 displays the 4 conversion operator.

@ B 2 4 8 5 2 ™ KGF j
¸

Steps and keystrokes Display

1. Display the Y= Editor.

Press 8 #

2. Enter the function (abs(x2N3)N10)/2.

The screen shot shows the “pretty print”
display at y1=.

@ c ½ A ¸ X Z 2 | 3 d | 1 0
d e 2 ¸

Steps and keystrokes Display

entry line
Previews 53

3. Display the graph of the function.

Select 6:ZoomStd by pressing 6 or by
moving the cursor to 6:ZoomStd and
pressing ¸.

Press „ 6

4. Turn on Trace.

The tracing cursor, and the x and y
coordinates are displayed.

Press …

5. Open the MATH menu and select
3:Minimum.

Press ‡ D D ¸

6. Set the lower bound.

Press B (right cursor) to move the tracing
cursor until the lower bound for x is just to
the left of the minimum node before
pressing ¸ the second time.

Press B ... B ¸

7. Set the upper bound.

Press B (right cursor) to move the tracing
cursor until the upper bound for x is just to
the right of the minimum node.

Press B ... B

8. Find the minimum point on the graph
between the lower and upper bounds.

Press ¸

Steps and keystrokes Display

tracing cursor

minimum point
minimum coordinates
54 Previews

Basic Function Graphing II
Graph a circle of radius 5, centered on the origin of the coordinate
system. View the circle using the standard viewing window (ZoomStd).
Then use ZoomSqr to adjust the viewing window.

9. Transfer the result to the Home screen, and
then display the Home screen.

@ 8 ? "

Steps and keystrokes Display

1. Display the MODE dialog box. For Graph
mode, select FUNCTION.

Press 3 B 1 ¸

2. Display the Home screen. Then store the
radius, 5, in variable r.

@ " 5 9 j R ¸

3. Display and clear the Y= Editor. Then

define y1(x) = , the top half of a
circle.

In function graphing, you must define
separate functions for the top and bottom
halves of a circle.

@ 8 # , 8 ̧ ̧ 2] j R
Z 2 | X Z 2 d ¸

4. Define y2(x) = , the function for
the bottom half of the circle.

The bottom half is the negative of the top
half, so you can define y2(x) = Ly1(x).

Use the full function name y1(x), not
simply y1.

Press ¸ ? Y 1 c X d ¸

Steps and keystrokes Display

5!r

r2 x2–()

r2 x2––
Previews 55

Note: There is a gap between the top and bottom halves of the circle
because each half is a separate function. The mathematical endpoints of
each half are (L5,0) and (5,0). Depending on the viewing window,
however, the plotted endpoints for each half may be slightly different
from their mathematical endpoints.

Parametric Graphing
Graph the parametric equations describing the path of a ball kicked at an
angle (q) of 60¡ with an initial velocity (v0) of 15 meters/sec. The gravity
constant g = 9.8 meters/sec2. Ignoring air resistance and other drag
forces, what is the maximum height of the ball and when does it hit the
ground?

5. Select the ZoomStd viewing window,
which automatically graphs the functions.

In the standard viewing window, both the
x and y axes range from L10 to 10.
However, this range is spread over a longer
distance along the x axis than the y axis.
Therefore, the circle appears as an ellipse.

Press „ 6

6. Select ZoomSqr.

ZoomSqr increases the range along the
x axis so that circles and squares are shown
in correct proportion.

Press „ 5

Steps and keystrokes Display

1. Display the MODE dialog box. For Graph
mode, select PARAMETRIC.

Press 3 B 2 ¸

Steps and keystrokes Display

Notice slight gap
between top and
bottom halves.
56 Previews

2. Display and clear the Y= Editor. Then
define the horizontal component
xt1(t) = v0t cos q.

Enter values for v0 and q.

@ 8 # , 8 ¸ ¸ 15T p 2
X 60 2 “ d ¸

Type T p 2 X, not T 2 X.

Enter a ¡ symbol by typing either 2 “ or
2 I 2 1. This ensures a number is
interpreted as degrees, regardless of the
angle mode.

3. Define the vertical component

yt1(t) = v0t sin q N (g/2)t2.

Enter values for v0, q, and g.

@ ¸ 15T p 2 W 60 2 “ d |
c 9.8 e 2 d T Z 2 ¸

4. Display the Window Editor. Enter Window
variables appropriate for this example.

You can press either D or ¸ to enter a
value and move to the next variable.

Press 8 $ 0 D 3 D .02 D ? 2 D 25
D 5 D ? 2 D 10 D 5

5. Graph the parametric equations to model
the path of the ball.

Press 8 %

6. Select Trace. Then move the cursor along
the path to find the:

• y value at maximum height.

• t value where the ball hits the ground.

Press … B or A as necessary

Steps and keystrokes Display

xt1(t)=15t…cos(60¡)
Previews 57

Polar Graphing
The graph of the polar equation r1(q) = A sin B q forms the shape of a
rose. Graph the rose for A=8 and B=2.5. Then explore the appearance of
the rose for other values of A and B.

Steps and keystrokes Display

1. Display the MODE dialog box. For Graph
mode, select POLAR. For Angle mode,
select RADIAN.

Press 3 B 3 D D D B 1 ¸

2. Display and clear the Y= Editor. Then define
the polar equation r1(q) = A sin Bq.

Enter 8 and 2.5 for A and B, respectively.

@ 8 # , 8 ¸ ¸ 8 2 W 2.5
8 Ï d ¸

3. Select the ZoomStd viewing window, which
graphs the equation.

• The graph shows only five rose petals.

– In the standard viewing window,
the Window variable qmax = 2p.
The remaining petals have q values
greater than 2p.

• The rose does not appear symmetrical.

– Both the x an y axes range from L10
to 10. However, this range is spread
over a longer distance along the x
axis than the y axis.

Press „ 6

4. Display the Window Editor, and change
qmax to 4p.

4p will be evaluated to a number when you
leave the Window Editor.

Press 8 $ D 4 2 T
58 Previews

Sequence Graphing
A small forest contains 4000 trees. Each year, 20% of the trees will be
harvested (with 80% remaining) and 1000 new trees will be planted.
Using a sequence, calculate the number of trees in the forest at the end of
each year. Does it stabilize at a certain number?

5. Select ZoomSqr, which regraphs the
equation.

ZoomSqr increases the range along the
x axis so that the graph is shown in correct
proportion.

Press „ 5

You can change values for A and B as
necessary and regraph the equation.

Initially After 1 Year After 2 Years After 3 Years . . .

4000 .8 x 4000
+ 1000

.8 x (.8 x 4000 +
1000) + 1000

.8 x (.8 x (.8 x
4000 + 1000) +
1000) + 1000

. . .

Steps and keystrokes Display

1. Display the MODE dialog box. For Graph
mode, select SEQUENCE.

Press 3 B 4 ¸

Steps and keystrokes Display
Previews 59

2. Display and clear the Y= Editor. Then define
the sequence as
u1(n) = iPart(.8…u1(nN1)+1000).

Use iPart to take the integer part of the
result. No fractional trees are harvested.

To access iPart(, you can use 2 I,
simply type it, or select it from the
CATALOG.

@ 8 # , 8 ¸ ¸ 2 I 14.8
j U1 c j N | 1 d « 1000 d
¸

3. Define ui1 as the initial value that will be
used as the first term.

Press ¸ 4000 ¸

4. Display the Window Editor. Set the n and
plot Window variables.

nmin=0 and nmax=50 evaluate the size of
the forest over 50 years.

Press 8 $ 0 D 50 D 1 D 1 D

5. Set the x and y Window variables to
appropriate values for this example.

Press 0 D 50 D 10 D 0 D 6000 D 1000

6. Display the Graph screen.

Press 8 %

Steps and keystrokes Display
60 Previews

3D Graphing
Graph the 3D equation z(x,y) = (x3y N y3x) / 390. Animate the graph by
using the cursor to interactively change the eye Window variable values
that control your viewing angle. Then view the graph in different graph
format styles.

7. Select Trace. Move the cursor to trace year
by year. How many years (nc) does it take
the number of trees (yc) to stabilize?

Trace begins at nc=0.
nc is the number of years.
xc = nc since n is plotted on the x axis.
yc = u1(n), the number of trees at
year n.

Press … B and A as necessary

Steps and keystrokes Display

1. Display the MODE dialog box. For Graph
mode, select 3D.

Press 3 B 5 ¸

2. Display and clear the Y= Editor. Then define

the 3D equation z1(x,y) = (x3y N y3x) / 390.

Notice that implied multiplication is used in
the keystrokes.

Press 8 # , 8 ¸ ¸ c X Z 3 Y |
Y Z 3 X d e 390 ¸

3. Change the graph format to display and
label the axes. Also set Style = WIRE
FRAME.

You can animate any graph format style,
but WIRE FRAME is fastest.

@ 8 Í D B 2 D B 2 D B 1 ¸

Steps and keystrokes Display

By default, sequences use
the Square display style.
Previews 61

4. Select the ZoomStd viewing cube, which
automatically graphs the equation.

As the equation is evaluated (before it is
graphed), “evaluation percentages” are
shown in the upper-left part of the screen.

Press „ 6

Note: If you have already used 3D
graphing, the graph may be shown in
expanded view. When you animate the
graph, the screen returns to normal view
automatically. (Except for animation, you
can do the same things in normal and
expanded view.)

Press p (press p to switch between
expanded and normal view)

5. Animate the graph by decreasing the eyef
Window variable value.

D or C may affect eyeq and eyeψ, but to a
lesser extent than eyef.

To animate the graph continuously, press
and hold the cursor for about 1 second and
then release it. To stop, press ¸.

Press D eight times

6. Return the graph to its initial orientation.
Then move the viewing angle along the
“viewing orbit” around the graph.

Press 0 (zero, not the letter O) A A A

7. View the graph along the x axis, the y axis,
and then the z axis.

Press X

This graph has the same shape along the
y axis and x axis.

Press Y

Press Z

Steps and keystrokes Display
62 Previews

Note: You can also display the graph as an implicit plot by using the
GRAPH FORMATS dialog box (8 Í). If you press: Í to switch between
styles, the implicit plot is not displayed.

Differential Equation Graphing
Graph the solution to the logistic 1st-order differential equation
y' = .001y…(100Ny). Start by drawing only the slope field. Then enter initial
conditions in the Y= Editor and interactively from the Graph screen.

8. Return to the initial orientation.

Press 0 (zero)

9. Display the graph in different graph format
styles.

@ Í (press Í to switch from each style
to the next) HIDDEN SURFACE

CONTOUR LEVELS
(may require extra time to
calculate contours)

WIRE AND CONTOUR

WIRE FRAME

Steps and keystrokes Display

1. Display the MODE dialog box. For Graph
mode, select DIFF EQUATIONS.

Press 3 B 6 ¸

Steps and keystrokes Display
Previews 63

2. Display and clear the Y= Editor. Then define
the 1st-order differential equation:

y1'(t)=.001y1…(100Ny1)

Press p to enter the … shown above. Do not
use implied multiplication between the
variable and parentheses. If you do, it is
treated as a function call.

Leave the initial condition yi1 blank.

Note: With y1' selected, the device will
graph the y1 solution curve, not the
derivative y1'.

Press 8 # , 8 ¸ ¸ .001 Y1 p c
100 | Y1 d ¸

3. Display the GRAPH FORMATS dialog box.
Then set Axes = ON, Labels = ON, Solution
Method = RK, and Fields = SLPFLD.

Note: To graph one differential equation,
Fields must be set to SLPFLD or FLDOFF. If
Fields=DIRFLD, an error occurs when you
graph.

@ 8 Í D D B 2 D D B 2 D B 1 D B 1
¸

4. Display the Window Editor, and set the
Window variables as shown to the right.

Press 8 $ 0 D 10 D .1 D 0 D ? 10 D
110 D 10 D ? 10 D 120 D 10 D 0 D .001
D 20

5. Display the Graph screen.

Because you did not specify an initial
condition, only the slope field is drawn (as
specified by Fields=SLPFLD in the GRAPH
FORMATS dialog box).

Press 8 %

Steps and keystrokes Display
64 Previews

6. Return to the Y= Editor and enter an initial
condition:

yi1=10

Press 8 # ¸ 10 ¸

7. Return to the Graph screen.

Initial conditions entered in the Y= Editor
always occur at t0. The graph begins at the
initial condition and plots to the right. Then
it plots to the left.

Press 8 %

8. Return to the Y= Editor and change yi1 to
enter two initial conditions as a list:

yi1={10,20}

Press 8 # C ¸ 2 [10 b 20 2 \
¸

9. Return to the Graph screen.

Press 8 %

10. To select an initial condition interactively,
press:
@ 2 Š
When prompted, enter t=40 and y1=45.

When selecting an initial condition
interactively, you can specify a value for t
other than the t0 value entered in the
Y= Editor or Window Editor.

Instead of entering t and y1 after pressing
@ 2 Š
you can move the cursor to a point on the
screen and then press ¸.

You can use … to trace curves for initial
conditions specified in the Y= Editor.
However, you cannot trace the curve for an
initial condition selected interactively.

@ 2 Š 40 ¸ 45 ¸

Steps and keystrokes Display

The initial condition is
marked with a circle.
Previews 65

Additional Graphing Topics
From the Home screen, graph the piecewise defined function: y = Lx
when x < 0 and y = 5 cos(x) when x ‚ 0. Draw a horizontal line across the
top of the cosine curve. Then save a picture of the displayed graph.

Steps and keystrokes Display

1. Display the MODE dialog box. For Graph
mode, select FUNCTION. For Angle mode,
select RADIAN.

Press 3 B 1 D D D B 1 ¸

2. Display the Home screen. Use the Graph
command and the when function to specify
the piecewise defined function.

† 2 selects Graph from the Other toolbar
menu and automatically adds a space.

@ " † 2 2 ™ WHEN j c X
2 Â 0 b ? X b 5 p 2 X X d d

3. Execute the Graph command, which
automatically displays the Graph screen.

The graph uses the current Window
variables, which are assumed to be their
standard values („ 6) for this example.

Press ¸

4. Draw a horizontal line across the top of the
cosine curve.

The calculator remains in “line” mode until
you select a different operation or press
N.

@ 2 ‰ 5 C (until the line is
positioned) ¸

5. Save a picture of the graph. Use PIC1 as the
variable name for the picture.

Be sure to set Type = Picture. By default, it
is set to GDB.

@ , 2 B 2 D D PIC j 1 ¸ ¸

Graph when(x<0,Lx,
5…cos(x))
66 Previews

Tables
Evaluate the function y=x3N2x at each integer between M10 and 10. How
many sign changes are there, and where do they occur?

6. Clear the drawn horizontal line.

You can also press † to regraph.

@ 2 ˆ 1

7. Open the saved picture variable to redisplay
the graph with the line.

Be sure to set Type = Picture. By default, it
is set to GDB.

Press , 1 B 2 (if not already shown, also
set Variable = pic1) ¸

Steps and keystrokes Display

1. Display the MODE dialog box. For the
Graph mode, select FUNCTION.

Press 3 B 1 ¸

2. Display and clear the Y= Editor. Then define

y1(x) = x3 N 2x.

Press 8 # , 8 ¸ ¸ X Z 3 | 2 X
¸

3. Set the table parameters to:
tblStart = M10
@tbl = 1
Graph < - > Table = OFF
Independent = AUTO

Press 8 & ? 10 D 1 D B 1 D B 1
¸

Steps and keystrokes Display
Previews 67

Split Screens
Split the screen to show the Y= Editor and the Graph screen. Then
explore the behavior of a polynomial as its coefficients change.

4. Display the Table screen.

Press 8 '

5. Scroll through the table. Notice that y1
changes sign at x = M1, 1, and 2.

To scroll one page at a time, use 2 D and
2 C.

Press D and C as necessary

6. Zoom in on the sign change between x = L2
and x = L1 by changing the table parameters
to:
tblStart = L2
@tbl = .1

Press „ ? 2 D .1 ¸ ¸

Steps and keystrokes Display

1. Display the MODE dialog box.
For Graph, select FUNCTION.
For Split Screen, select LEFT-RIGHT.
For Split 1 App, select Y= Editor.
For Split 2 App, select Graph.

Press 3 B 1 „ B 3 D B 2 D B 4 ¸

2. Clear the Y= Editor and turn off any stat

data plots. Then define y1(x) = .1x3N2x+6.

A thick border around the Y= Editor
indicates it is active. When active, its entry
line goes all the way across the display.

Press , 8 ¸ ‡ 5 ¸ .1 X Z 3 | 2 X
« 6 ¸

Steps and keystrokes Display
68 Previews

3. Select the ZoomStd viewing window, which
switches to the Graph screen and graphs the
function.

The thick border is now around the Graph
screen.

Press „ 6

4. Switch to the Y= Editor. Then edit y1(x) to

change .1x3 to .5x3.

2 a is the second function of O.The
thick border is around the Y= Editor.

Press 2 a C ¸ A B B 0 5 ¸

5. Switch to the Graph screen, which regraphs
the edited function.

The thick border is around the Graph
screen.

Press 2 a

6. Switch to the Y= Editor. Then open the
Window Editor in its place.

Press 2 a 8 $

7. Open the Home screen. Then exit to a
full-sized Home screen.

Press 2 K twice.

Steps and keystrokes Display
Previews 69

Data/Matrix Editor
Use the Data/Matrix Editor to create a one-column list variable. Then
add a second column of information. Notice that the list variable (which
can have only one column) is automatically converted into a data
variable (which can have multiple columns).

Steps and keystrokes Display

1. Use O to display the Data/Matrix Editor.
Create a new list variable named TEMP.

Press 3 B 3 D D TEMP ¸ ¸

2. Enter a column of numbers. Then move the
cursor up one cell (just to see that a
highlighted cell’s value is shown on the
entry line).

LIST is shown in the upper-left corner to
indicate a list variable.

You can use D instead of ¸ to enter
information in a cell.

Press 1 ̧ 2 ¸ 3 ̧ 4 ̧ 5 ¸
6 ¸ C

3. Move to column 2, and define its column
header so that it is twice the value of
column 1.

DATA is shown in the upper-left corner to
indicate that the list variable was converted
to a data variable.

@ B † 2 p j C 1 ¸

4. Move to the column 2 header cell to show
its definition in the entry line.

When the cursor is on the header cell, you
do not need to press † to define it. Simply
begin typing the expression.

Press 2 C C

Œ means the cell is in a
defined column.
70 Previews

Note: If you don’t need to save the current variable, use it as a
scratchpad. The next time you need a variable for temporary data, clear
the current variable and re-use it. This lets you enter temporary data
without creating a new variable each time, which uses up memory.

Statistics and Data Plots
Based on a sample of seven cities, enter data that relates population to
the number of buildings with more than 12 stories. Using Median-
Median and linear regression calculations, find and plot equations to fit
the data. For each regression equation, predict how many buildings of
more than 12 stories you would expect in a city of 300,000 people.

5. Clear the contents of the variable.

Simply clearing the data does not convert
the data variable back into a list variable.

Press , 8 ¸

Steps and keystrokes Display

1. Display the MODE dialog box. For Graph
mode, select FUNCTION.

Press 3 B 1 ¸

2. Use•O to display the Data/Matrix Editor.
Create a new data variable named BUILD.

Press 3 D D BUILD ¸ ¸

Steps and keystrokes Display
Previews 71

3. Using the sample data below, enter the
population in column 1.

Pop. (in 1000s) Bldgs > 12 stories
150 4
500 31
800 42
250 9
500 20
750 55
950 73

Press 150 ¸ 500 ¸ 800 ¸ 250
¸ 500 ¸ 750 ¸ 950 ¸

4. Move the cursor to row 1 in column 2 (r1c2).
Then enter the corresponding number of
buildings.

8 C moves the cursor to the top of the
page. After typing data for a cell, you can
press ¸ or D to enter the data and
move the cursor down one cell. Pressing C
enters the data and moves the cursor up
one cell.

@ B 8 C 4 ¸ 31 ¸ 42 ¸ 9
¸ 20 ¸ 55 ¸ 73 ¸

5. Move the cursor to row 1 in column 1 (r1c1).
Sort the data in ascending order of
population.

This sorts column 1 and then adjusts all
other columns so that they retain the same
order as column 1. This is critical for
maintaining the relationships between
columns of data.

To sort column 1, the cursor can be
anywhere in column 1. This example has
you press
@ 8 C
so that you can see the first four rows.

@ A 8 C 2 ˆ 4

Steps and keystrokes Display
72 Previews

6. Display the Calculate dialog box. Set
Calculation Type = MedMed
x = C1
y = C2
Store RegEQ to = y1(x)

@ ‡ B 7 D C j 1 D j C2 D B D
¸

7. Perform the calculation to display the
MedMed regression equation.

As specified on the Calculate dialog box,
this equation is stored in y1(x).

Press ¸

8. Close the STAT VARS screen. The
Data/Matrix Editor displays.

Press ¸

9. Display the Calculate dialog box. Set:
Calculation Type = LinReg
x = C1
y = C2
Store RegEQ to = y2(x)

Press ‡ B 5 D D D B D ¸

10. Perform the calculation to display the
LinReg regression equation.

This equation is stored in y2(x).

Press ¸

11. Close the STAT VARS screen. The
Data/Matrix Editor displays.

Press ¸

12. Display the Plot Setup screen.

Plot 1 is highlighted by default.

… lets you clear highlighted Plot settings.

Press „

Steps and keystrokes Display
Previews 73

13. Define Plot 1 as:
Plot Type = Scatter
Mark = Box
x = C1
y = C2

Notice the similarities between this and the
Calculate dialog box.

@ , B 1 D B 1 D C j 1 D j C2

14. Save the plot definition and return to the
Plot Setup screen.

Notice the shorthand notation for Plot 1’s
definition.

Press ¸ twice

15. Display the Y= Editor. For y1(x), the
MedMed regression equation, set the
display style to Dot.

Note: Depending on the previous contents
of your Y= Editor, you may need to move
the cursor to y1.

PLOTS 1 at the top of the screen means that
Plot 1 is selected.

Notice that y1(x) and y2(x) were selected
when the regression equations were stored.

@ 8 # 2 ˆ 2

16. Scroll up to highlight Plot 1.

The displayed shorthand definition is the
same as on the Plot Setup screen.

Press C

17. Use ZoomData to graph Plot 1 and the
regression equations y1(x) and y2(x).

ZoomData examines the data for all
selected stat plots and adjusts the viewing
window to include all points.

Press „ 9

Steps and keystrokes Display
74 Previews

18. Return to the current session of the
Data/Matrix Editor.

Press 2a

19. Enter a title for column 3. Define column 3’s
header as the values predicted by the
MedMed line.

To enter a title, the cursor must highlight
the title cell at the very top of the column.

† lets you define a header from anywhere
in a column. When the cursor is on a header
cell, pressing † is not required.

@ B B C C 2 ™ MED j ¸
† Y1 c j C1 d ¸

20. Enter a title for column 4. Define column 4’s
header as the residuals (difference between
observed and predicted values) for
MedMed.

@ B C 2 ™ RESID j ¸ j
C2 | j C3 ¸

21. Enter a title for column 5. Define column 5’s
header as the values predicted by the
LinReg line.

@ B C C 2 ™ LIN j ̧ † Y2
c j C1 d ¸

22. Enter a title for column 6. Define column 6’s
header as the residuals for LinReg.

@ B C 2 ™ RESID j ¸ †
j C2 | j C5 ¸

23. Display the Plot Setup screen and deselect
Plot 1.

Press „ †

Steps and keystrokes Display
Previews 75

24. Highlight Plot 2 and define it as:
Plot Type = Scatter
Mark = Box
x = C1
y = C4 (MedMed residuals)

@ D , D D C j 1 D j C4 ¸
¸

25. Highlight Plot 3 and define it as:
Plot Type = Scatter
Mark = Plus
x = C1
y = C6 (LinReg residuals)

@ D , D B 3 D C j 1 D j C6
¸ ¸

26. Display the Y= Editor and turn all the y(x)
functions off.

From ‡, select 3:Functions Off, not
1:All Off.

Plots 2 and 3 are still selected.

Press 8 # ‡ 3

27. Use ZoomData to graph the residuals.

› marks the MedMed residuals;
+ marks the LinReg residuals.

Press „ 9

28. Display the Home screen.

@ "

29. Use the MedMed (y1(x)) and LinReg (y2(x))
regression equations to calculate values for
x = 300 (300,000 population).

The round function (2 I 1 3) ensures
that results show an integer number of
buildings.

After calculating the first result, edit the
entry line to change y1 to y2.

Press 2 I 1 3 Y1 c 300 d b 0 d
¸ B A (eight times) 0 2 ¸

Steps and keystrokes Display
76 Previews

Programming
Write a program that prompts the user to enter an integer, sums all
integers from 1 to the entered integer, and displays the result.

Steps and keystrokes Display

1. Use O to display the Program Editor.
Create a new program.

Press 3

2. Type PROG1 (with no spaces) as the name
of the new program variable.

@ D D PROG j 1

3. Display the “template” for a new program.
The program name, Prgm, and EndPrgm
are shown automatically.

After typing in an input box such as
Variable, you must press ¸ twice.

Press ¸ twice
Previews 77

4. Type the following program lines.

Request "Enter an integer",n
Displays a dialog box that prompts
“Enter an integer”, waits for the user to
enter a value, and stores it (as a string)
to variable n.

expr(n)!n
Converts the string to a numeric
expression.

0!temp
Creates a variable named temp and
initializes it to 0.

For i,1,n,1
Starts a For loop based on variable i.
First time through the loop, i = 1. At
end of loop, i is incremented by 1. Loop
continues until i > n.

temp+i!temp
Adds current value of i to temp.

EndFor
Marks the end of the For loop.

Disp temp
Displays the final value of temp.

Type the program lines as shown. Press
¸ at the end of each line.

5. Go to the Home screen. Enter the program
name, followed by a set of parentheses.

You must include () even when there are no
arguments for the program.

The program displays a dialog box with the
prompt specified in the program.

@ " 2 ™ PROG j 1 c d
¸

Steps and keystrokes Display

prog1()
78 Previews

Text Operations
Start a new Text Editor session. Then practice using the Text Editor by
typing whatever text you want. As you type, practice moving the text
cursor and correcting any typos you may enter.

6. Type 5 in the displayed dialog box.

Press 5

7. Continue with the program. The
Disp command displays the result on the
Program I/O screen.

The result is the sum of the integers from 1
through 5.

Although the Program I/O screen looks
similar to the Home screen, it is for program
input and output only. You cannot perform
calculations on the Program I/O screen.

Press ¸ twice

8. Leave the Program I/O screen and return to
the Home screen.

You can also press N, 2 K, or
@ "
to return to the Home screen.

Press ‡

Steps and keystrokes Display

1. Start a new session of the Text Editor.

Press 3

Steps and keystrokes Display

Output from
other programs
may still be on
the screen.

Result of integer 5
Previews 79

2. Create a text variable called TEST, which
will automatically store any text you enter
in the new session.

Use the MAIN folder, shown as the default
on the NEW dialog box.

After typing in an input box such as
Variable, you must press ¸ twice.

Press D TEST ¸ ¸

3. Type some sample text.

• To type a single uppercase letter, press
7 and then the letter.

– To type a space, press j 
(alpha function of the ? key).

– To type a period, press j to turn
alpha-lock off, press ¶, and then
press 2 ™ to turn alpha-lock
on again.

Practice editing your text by using:

• The cursor pad to move the text cursor.

• 0 or 8 . to delete the character to
the left or right of the cursor,
respectively.

@ 2 ™ type anything you want

4. Leave the Text Editor and display the Home
screen.

Your text session was stored automatically
as you typed. Therefore, you do not need to
save the session manually before exiting the
Text Editor.

@ "

5. Return to the current session on the Text
Editor. Notice that the displayed session is
exactly the same as you left it.

Press 2a

Steps and keystrokes Display
80 Previews

Numeric Solver
Consider the equation a=(m2Nm1)/(m2+m1)…g, where the known values
are m2=10 and g=9.8. If you assume that a=1/3 g, find the value of m1.

Steps and keystrokes Display

1. Use O to display the Numeric Solver.

2. Enter the equation.

When you press ¸ or D, the screen lists
the variables used in the equation.

@ j A Á c j M2 | j M1 d e
c j M2 « j M1 d p j G
¸

3. Enter values for each variable, except the
unknown variable m1.

Define m2 and g first. Then define a. (You
must define g before you can define a in
terms of g.) Accept the default for bound.
If a variable has been defined previously, its
value is shown as a default.

@ D 10 D D 9.8 C C C j G e 3

4. Move the cursor to the unknown variable
m1.

Optionally, you can enter an initial guess for
m1. Even if you enter a value for all
variables, the Numeric Solver solves for the
variable marked by the cursor.

Press D D

g/3 is evaluated when you
move the cursor off the
line.

5. Solve for the unknown variable.

To check the solution’s accuracy, the left and
right sides of the equation are evaluated
separately. The difference is shown as
left-rt. If the solution is precise, left-rt=0.

Press „
0 marks the calculated
values.
Previews 81

Number Bases
Calculate 10 binary (base 2) + F hexadecimal (base 16) + 10 decimal (base
10). Then, use the 4 operator to convert an integer from one base to
another. Finally, see how changing the Base mode affects the displayed
results.

6. Graph the solution using a ZoomStd
viewing window.

The graph is displayed in a split screen. You
can explore the graph by tracing, zooming,
etc.

The variable marked by the cursor
(unknown variable m1) is on the x axis, and
left-rt is on the y axis.

Press … 3

7. Return to the Numeric Solver and exit the
split screen.

You can press ¸ or D to redisplay the
list of variables.

Press 2 a … 2

Steps and keystrokes Display

1. Display the MODE dialog box, Page 2. For
Base mode, select DEC as the default
number base.

Integer results are displayed according to
the Base mode. Fractional and floating-
point results are always displayed in decimal
form.

Press 3 „ (use D to move to Base
mode) B 1 ¸

Steps and keystrokes Display
82 Previews

2. Calculate 0b10+0hF+10.

To enter a binary or hex number, you must
use the 0b or 0h prefix (zero and the letter B
or H). Otherwise, the entry is treated as a
decimal number.

Note: The 0b or 0h prefix is a zero, not the
letter O, followed by B or H.

@ 0 j B 10 « 0 2 ™ HF j «
10 ¸

3. Add 1 to the result and convert it to binary.

2 4 displays the 4 conversion operator.

@ « 1 2 4 2 ™ BIN j ¸

4. Add 1 to the result and convert it to
hexadecimal.

@ « 1 2 4 2 ™ HEX j ¸

5. Add 1 to the result and leave it in the
default decimal base.

Results use the 0b or 0h prefix to identify
the base.

Press « 1 ¸

6. Change the Base mode to HEX.

When Base = HEX or BIN, the magnitude of
a result is restricted to certain size
limitations.

Press 3 „ (use D to move to Base
mode) B 2 ¸

7. Calculate 0b10+0hF+10.

@ 0 j B 10 « 0 2 ™ HF j «
10 ¸

8. Change the Base mode to BIN.

Press 3 „ (use D to move to Base
mode) B 3 ¸

Steps and keystrokes Display
Previews 83

Memory and Variable Management
Assign values to a variety of variable data types. Use the VAR-LINK screen
to view a list of the defined variables. Then move a variable to the user
data archive memory and explore the ways in which you can and cannot
access an archived variable. (Archived variables are locked automatically.)
Finally, unarchive the variable and delete the unused variables so that
they will not take up memory.

9. Re-enter 0b10+0hF+10.

Press ¸

Steps and keystrokes Display

1. From the Home screen, assign variables with
the following variable types.

Expression: 5 !x1
Function: x2+4 !f(x)
List: {5,10} !l1
Matrix: [30,25] !m1

@ " M 5 9 X1 ¸ X Z 2 «
4 9 j F c X d ¸ 2 [5 b
10 2 \ 9 j L1 ¸ 2 g 30
b 25 2 h 9 j M1 ¸

2. Suppose you start to perform an operation
using a function variable but can’t
remember its name.

Press 5 p

3. Display the VAR-LINK screen.

This example assumes that the variables
assigned above are the only ones defined.

Press 2 °

Steps and keystrokes Display

5…
84 Previews

4. Change the screen’s view to show only
function variables.

Although this may not seem particularly
useful in an example with four variables,
consider how useful it could be if there
were many variables of all different types.

Press „ D D B 5 ¸

5. Highlight the f function variable, and view
its contents.

Notice that the function was assigned using
f(x) but is listed as f on the screen.

@ D 2 ˆ

6. Close the Contents window.

Press N

7. With the f variable still highlighted, close
VAR-LINK and paste the variable name to
the entry line. Notice that “(” is pasted.

Press ¸

8. Complete the operation.

Press 2 d ¸

Steps and keystrokes Display

5…f(

5…f(2)
Previews 85

Archiving a variable

Steps and keystrokes Display

1. Redisplay VAR-LINK, and highlight the
variable you want to archive.

The previous change in view is no longer in
effect. The screen lists all defined variables.

Press 2 ° (use D to highlight x1)

2. Use the , Manage toolbar menu to
archive the variable.

û indicates the variable is archived.

Press , 8

3. Return to the Home screen and use the
archived variable in a calculation.

@ " 6 p X1 ¸

4. Attempt to store a different value to the
archived variable.

Press 10 9 X1 ¸

5. Cancel the error message.

Press N

6. Use VAR-LINK to unarchive the variable.

Press 2 ° (use D to highlight x1)
, 9

7. Return to the Home screen and store a
different value to the unarchived variable.

@ " ¸
86 Previews

Deleting variables

Steps and keystrokes Display

1. Display VAR-LINK, and use the ‡ All
toolbar menu to select all variables.

A Ÿ mark indicates items that are selected.
Notice that this also selected the MAIN
folder.

Note: Instead of using ‡ (if you don’t
want to delete all your variables), you can
select individual variables. Highlight each
variable to delete and press †.

Press ‡ 1

2. Use , to delete.

Note: You can press 0 (instead of , 1) to
delete the marked variables.

Press , 1

3. Confirm the deletion.

Press ¸

4. Because ‡ 1 also selected the MAIN folder,
an error message states that you cannot
delete the MAIN folder. Acknowledge the
message.

When VAR-LINK is redisplayed, the deleted
variables are not listed.

Press ¸

5. Close VAR-LINK and return to the current
application (Home screen in this example).

When you use N (instead of ¸) to
close VAR-LINK, the highlighted name is not
pasted to the entry line.

Press N
Previews 87

88 Previews

3

Activities

Analyzing the Pole-Corner Problem
A ten-foot-wide hallway meets a five-foot-wide hallway in the corner of
a building. Find the maximum length pole that can be moved around the
corner without tilting the pole.

Maximum Length of Pole in Hallway
The maximum length of a pole c is the shortest line segment touching
the interior corner and opposite sides of the two hallways as shown in
the diagram below.

Use proportional sides and the Pythagorean theorem to find the length c
with respect to w. Then find the zeros of the first derivative of c(w). The
minimum value of c(w) is the maximum length of the pole.

1. Define the expression for side a in terms of
w and store it in a(w).

Note: When you want to define a function,
use multiple character names as you build
the definition.

2. Define the expression for side b in terms of
w and store it in b(w).

10

5

w
a

b

c

a = w+5
b = 10a

w

Activities 89

Deriving the Quadratic Formula
This activity shows you how to derive the quadratic formula:

x =

Detailed information about using the functions in this example can be
found in Symbolic Manipulation.

3. Define the expression for side c in terms of
w and store it in c(w).

Enter: Define c(w)= ‡(a(w)^2+b(w)^2)

4. Use the zeros() function to compute the
zeros of the first derivative of c(w) to find
the minimum value of c(w).

Note: The maximum length of the pole is
the minimum value of c(w).

5. Compute the exact maximum length of the
pole.

Enter: c (2 ±)

6. Compute the approximate maximum length
of the pole.

Result: Approximately 20.8097 feet.

Note: Use the auto-paste feature to copy
the result from step 4 to the entry line
inside the parentheses of c() and press 8
¸.

b– b2 4ac–±
2a

90 Activities

Performing Computations to Derive the Quadratic Formula
Perform the following steps to derive the quadratic formula by
completing the square of the generalized quadratic equation.

1. Clear all one-character variables in the
current folder.

@ 2 ˆ

Choose 1:Clear a-z and press ¸ to
confirm.

2. On the Home screen, enter the generalized

quadratic equation: ax2+bx+c=0.

3. Subtract c from both sides of the equation.

@ 2 ± | j C

Note: This example uses the result of the
last answer to perform computations on the
TI-89 Titanium. This feature reduces
keystroking and chances for error.

4. Divide both sides of the equation by the
leading coefficient a.

Note: Continue to use the last answer (2
±) as in step 3 in steps 4 through 9.

5. Use the expand() function to expand the
result of the last answer.

6. Complete the square by adding ((b/a)/2)2 to
both sides of the equation.

7. Factor the result using the factor()
function.
Activities 91

Exploring a Matrix
This activity shows you how to perform several matrix operations.

Exploring a 3x3 Matrix
Perform these steps to generate a random matrix, augment and find the
identity matrix, and then solve to find an invalid value of the inverse.

8. Multiply both sides of the equation by 4a2.

9. Take the square root of both sides of the
equation with the constraint that a>0 and
b>0 and x>0.

10. Solve for x by subtracting b from both sides
and then dividing by 2a.

Note: This is only one of the two general
quadratic solutions due to the constraint in
step 9.

1. On the Home screen, use RandSeed to set
the random number generator seed to the
factory default, and then use randMat() to
create a random 3x3 matrix and store it in a.

2. Replace the [2,3] element of the matrix
with the variable x, and then use the
augment() function, to augment the 3x3
identity to a and store the result in b.
92 Activities

Exploring cos(x) = sin(x)
This activity uses two methods to find where cos(x) = sin(x) for the
values of x between 0 and 3p.

Method 1: Graph Plot
Perform the following steps to observe where the graphs of the
functions y1(x)=cos(x) and y2(x)=sin(x) intersect.

3. Use rref() to “row reduce” matrix b:

The result will have the identity matrix in
the first three columns and a^L1 in the last
three columns.

Note: Use the cursor in the history area to
scroll the result.

4. Solve for the value of x that will cause the
inverse of the matrix to be invalid.

Enter:
solve(getDenom(2 ± [1,4])=0,x)

Result: x= L70/17

Note: Use the cursor in the history area to
scroll the result.

1. In the Y= Editor, set y1(x)=cos(x) and
2(x)=sin(x).

2. In the Window Editor, set xmin=0 and
xmax=3p.

3. Press „ and select A:ZoomFit.

4. Find the intersection point of the two
functions.

Note: Press ‡ and select 5:Intersection.
Respond to the screen prompts to select the
two curves, and the lower and upper
bounds for intersection A.

5. Note the x and y coordinates. (Repeat steps
4 and 5 to find the other intersections.)
Activities 93

Method 2: Symbolic Manipulation
Perform the following steps to solve the equation sin(x)=cos(x) with
respect to x.

Finding Minimum Surface Area of a Parallelepiped
This activity shows you how to find the minimum surface area of a
parallelepiped having a constant volume V. Detailed information about
the steps used in this example can be found in Symbolic Manipulation
and 3D Graphing.

Exploring a 3D Graph of the Surface Area of a
Parallelepiped
Perform the following steps to define a function for the surface area of a
parallelepiped, draw a 3D graph, and use the Trace tool to find a point
close to the minimum surface area.

1. On the Home screen, enter solve(sin(x)=
cos(x),x).

The solution for x is where @n1 is any
integer.

2. Using the ceiling() and floor() functions,
find the ceiling and floor values for the
intersection points as shown.

Note: Move the cursor into the history area
to highlight the last answer. Press ¸ to
copy the result of the general solution.

3. Enter the general solution for x and apply
the constraint for @n1 as shown.

Compare the result with Method 1.

Note: To get the with operator:
@ Í

1. On the Home screen, define the function
sa(x,y,v) for the surface area of a
parallelepiped.

Enter: define sa(x,y,v)=2†x†y + 2v/x+2v/y
94 Activities

Finding the Minimum Surface Area Analytically
Perform the following steps to solve the problem analytically on the
Home screen.

Running a Tutorial Script Using the Text Editor
This activity shows you how to use the Text Editor to run a tutorial
script.

2. Select the 3D Graph mode. Then enter the
function for z1(x,y) as shown in this
example with volume v=300.

3. Set the Window variables to:

eye= [60,90,0]
x= [0,15,15]
y= [0,15,15]
z= [260,300]
ncontour= [5]

4. Graph the function and use Trace to go to
the point close to the minimum value of the
surface area function.

1. Solve for x and y in terms of v.

Enter: solve(d(sa(x,y,v),x)=0 and
d(sa(x,y,v),y)=0,{x,y})

2. Find the minimum surface area when the
value of v equals 300.

Enter: 300!v
Enter: sa(v^(1/3), v^(1/3),v)

Note: Press ¸ to obtain the exact result
in symbolic form. Press 8 ¸ to obtain
the approximate result in decimal form.
Activities 95

Running a Tutorial Script
Perform the following steps to write a script using the Text Editor, test
each line, and observe the results in the history area on the Home screen.

Note: The command symbol C is accessed from the „ 1:Command
toolbar menu.

2. Type the following lines into the Text Editor.

1. Open the Text Editor, and create a
new variable named demo1.

C
C
C
C
C
C

: Compute the maximum value of f on the closed interval [a,b]
: assume that f is differentiable on [a,b]
: define f(x)=x^3N2x^2+xN7
: 1!a:3.22!b
: d(f(x),x)!df(x)
: zeros(df(x),x)
: f(ans(1))
: f({a,b})
: The largest number from the previous two commands is the
maximum value of the function. The smallest number is the
minimum value.

3. Press … and select 1:Script view to show
the Text Editor and the Home screen on a
split-screen. Move the cursor to the first line
in the Text Editor.
96 Activities

Decomposing a Rational Function
This activity examines what happens when a rational function is
decomposed into a quotient and remainder. Detailed information about
the steps used in this example can be found in Basic Function Graphing
and Symbolic Manipulation.

Decomposing a Rational Function
To examine the decomposition of the rational function
f(x)=(x3N10x2Nx+50)/(xN2) on a graph:

4. Press † repeatedly to execute each line in
the script one at a time.

Note: Press † and select 2:Clear split to go
back to a full-sized Text Editor screen.

5. To see the results of the script on a full-sized
screen, go to the Home screen.

Note: Press 2 K twice to display the
Home screen.

1. On the Home screen, enter the rational
function as shown below and store it in a
function f(x).

Enter: (x^3N10x^2Nx+50)/(xN2)!f(x)

Note: Actual entries are displayed in
reverse type in the example screens.

2. Use the proper fraction function (propFrac)
to split the function into a quotient and
remainder.
Activities 97

3. Copy the last answer to the entry line.
–or–
Enter: 16/(xN2)+x^2N8†xN17

Note: Move the cursor into the history area
to highlight the last answer. Press ¸ to
copy it to the entry line.

4. Edit the last answer in the entry line. Store
the remainder to y1(x) and the quotient to
y2(x) as shown.

Enter: 16/(xN2)!y1(x): x^2N8ùxN17!y2(x)

5. In the Y= Editor, select the thick graphing
style for y2(x).

6. Add the original function f(x) to y3(x) and
select the square graphing style.

7. In the Window Editor, set the window
variables to:

x= [L10,15,10]
y= [L100,100,10]

8. Draw the graph.

Note: Be sure the Graph mode is set to
Function.
98 Activities

Observe that the global behavior of the f(x) function is basically
represented by the quadratic quotient y2(x). The rational expression is
basically a quadratic function as x gets very large in both the positive and
negative directions.

Studying Statistics: Filtering Data by Categories
This activity provides a statistical study of the weights of high school
students using categories to filter the data.

Filtering Data by Categories
Each student is placed into one of eight categories depending on the
student’s sex and academic year (freshman, sophomore, junior, or senior).
The data (weight in pounds) and respective categories are entered in the
Data/Matrix Editor.

The lower graph is y3(x)=f(x) graphed
separately using the line style.

Table 1: Category vs. Description

Category (C2) Academic Year and Sex

1
2
3
4
5
6
7
8

Freshman boys
Freshman girls
Sophomore boys
Sophomore girls
Junior boys
Junior girls
Senior boys
Senior girls
Activities 99

Perform the following steps to compare the weight of high school
students to their year in school.

Table 2: C1 (weight of each student in pounds) vs. C2 (category)

C1 C2 C1 C2 C1 C2 C1 C2

110
125
105
120
140
85
80
90
80
95

1
1
1
1
1
2
2
2
2
2

115
135
110
130
150
90
95
85

100
95

3
3
3
3
3
4
4
4
4
4

130
145
140
145
165
100
105
115
110
120

5
5
5
5
5
6
6
6
6
6

145
160
165
170
190
110
115
125
120
125

7
7
7
7
7
8
8
8
8
8

1. Start the Data/Matrix Editor, and create a
new Data variable named students.

2. Enter the data and categories from Table 2
into columns c1 and c2, respectively.

3. Open the „ Plot Setup toolbar menu.

Note: Set up several box plots to compare
different subsets of the entire data set.

4. Define the plot and filter parameters for
Plot 1 as shown in this screen.
100 Activities

5. Copy Plot 1 to Plot 2.

6. Repeat step 5 and copy Plot 1 to Plot 3,
Plot 4, and Plot 5.

7. Press ƒ, and modify the Include
Categories item for Plot 2 through Plot 5
to the following:

Plot 2: {1,2}
(freshman boys, girls)

Plot 3: {7,8}
(senior boys, girls)

Plot 4: {1,3,5,7}
(all boys)

Plot 5: {2,4,6,8}
(all girls)

8. In the Y= Editor, deselect any functions
that may be selected from a previous
activity.

Note: Only Plot 1 through Plot 5 should be
selected.

9. Display the plots by pressing „ and
selecting 9:Zoomdata.
Activities 101

CBL 2™ Program for the TI-89 Titanium
This activity provides a program that can be used when the TI-89
Titanium is connected to a Calculator-Based Laboratory™ (CBL 2™) unit.
This program works with the “Newton’s Law of Cooling” experiment,
and is similar to the “Coffee To Go” experiment in the CBL System
Experiment Workbook. You can use your computer keyboard to type
lengthy text and then use TI Connect™ software to send it to the
calculator. More CBL 2™ programs are available from the TI Web site at
educaton.ti.com.

10. Use the Trace tool to compare the median
student weights for different subsets.

Ê median, all students
Ë all students
Ì all freshmen
Í all seniors
Î all boys
Ï all girls

Program Instruction Description

:cooltemp() Program name

:Prgm

:Local i Declare local variable; exists only at
run time.

:setMode("Graph","FUNCTION") Set up the TI-89 Titanium for
function graphing.

:PlotsOff Turn off any previous plots.

:FnOff Turn off any previous functions.

:ClrDraw Clear any items previously drawn on
graph screens.

:ClrGraph Clear any previous graphs.

:ClrIO Clear the TI-89 Titanium Program IO
(input/output) screen.

:L10!xmin:99!xmax:10!xscl Set up the Window variables.

:L20!ymin:100!ymax:10!yscl

:{0}!data Create and/or clear a list named data.

:{0}!time Create and/or clear a list named time.

ÊË
ÍÌ

Î
Ï

102 Activities

http://education.ti.com/

You can also use the Calculator-Based Ranger™ system (CBR™) to explore
the mathematical and scientific relationships between distance, velocity,
acceleration, and time using data collected from activities you perform.

Studying the Flight of a Hit Baseball
This activity uses the split screen settings to show a parametric graph and
a table at the same time to study the flight of a hit baseball.

:Send{1,0} Send a command to clear the CBL 2™
unit.

:Send{1,2,1} Set up Chan. 2 of the CBL 2™ to
AutoID to record temp.

:Disp "Press ENTER to start" Prompt the user to press ¸.

:Disp "graphingTemperature."

:Pause Wait until the user is ready to start.

:PtText "TEMP(C)",2,99 Label the y axis of the graph.

:PtText "T(S)",80,L5 Label the x axis of the graph.

:Send{3,1,L1,0} Send the Trigger command to the
CBL 2™; collect data in real-time.

:For i,1,99 Repeat next two instructions for 99
temperature readings.

:Get data[i] Get a temperature from the CBL 2™
and store it in a list.

:PtOn i,data[i] Plot the temperature data on a
graph.

:EndFor

:seq(i,i,1,99,1)!time Create a list to represent time or
data sample number.

:NewPlot 1,1,time,data,,,,4 Plot time and data using NewPlot
and the Trace tool.

:DispG Display the graph.

:PtText "TEMP(C)",2,99 Re-label the axes.

:PtText "T(S)",80,L5

:EndPrgm Stop the program.

Program Instruction Description
Activities 103

Setting Up a Parametric Graph and Table
Perform the following steps to study the flight of a hit baseball that has
an initial velocity of 95 feet per second and an initial angle of 32 degrees.

1. Set the modes for Page 1 as shown in this
screen.

2. Set the modes for Page 2 as shown in this
screen.

3. In the Y= Editor on the left side, enter the
equation for the distance of the ball at time
t for xt1(t).

xt1(t)=95†t†cos(32¡)

Note: Press 2 “ to obtain the degree
symbol.

4. In the Y= Editor, enter the equation for the
height of the ball at time t for yt1(t).

yt1(t)=L16†t^2+95†t†sin(32¡)

5. Set the Window variables to:

t values= [0,4,.1]
x values= [0,300,50]
y values= [0,100,10]

6. Switch to the right side and display the
graph.

Note: Press 2 a.
104 Activities

Optional Exercise
Assuming the same initial velocity of 95 feet per second, find the angle
that the ball should be hit to achieve the greatest distance.

Visualizing Complex Zeros of a Cubic Polynomial
This activity describes graphing the complex zeros of a cubic polynomial.

Visualizing Complex Roots
Perform the following steps to expand the cubic polynomial
(xN1)(xNi)(x+i), find the absolute value of the function, graph the
modulus surface, and use the Trace tool to explore the modulus surface.

7. Display the TABLE SETUP dialog box, and
change tblStart to 0 and @tbl to 0.1.

Note: Press 8 &.

8. Display the table in the left side and press D
to highlight t=2.

Note: Press 8 '.

9. Switch to the right side. Press …, and trace
the graph to show the values of xc and yc
when tc=2.

Note: As you move the trace cursor from
tc=0.0 to tc=3.1, you will see the position of
the ball at time tc.

1. On the Home screen, use the expand()
function to expand the cubic expression
(xN1)(xNi)(x+i) and see the first polynomial.

2. Copy and paste the last answer to the entry
line and store it in the function f(x).

Note: Move the cursor into the history area
to highlight the last answer and press ̧ ,
to copy it to the entry line.
Activities 105

3. Use the abs() function to find the absolute
value of f(x+yi).

(This calculation may take about 2 minutes.)

Note: The absolute value of a function
forces any roots to visually just touch rather
than cross the x axis. Likewise, the absolute
value of a function of two variables will
force any roots to visually just touch the xy
plane.

4. Copy and paste the last answer to the entry
line and store it in the function z1(x,y).

Note: The graph of z1(x,y) will be the
modulus surface.

5. Set the unit to 3D graph mode, turn on the
axes for graph format, and set the Window
variables to:

eye= [20,70,0]
x= [L2,2,20]
y= [L2,2,20]
z= [L1,2]
ncontour= [5]

6. In the Y=Editor, press:
@ 8 Í
and set the Graph Format variables to:

Axes= ON
Labels= ON
Style= HIDDEN SURFACE

Note: Calculating and drawing the graph
takes about three minutes.

7. Graph the modulus surface.

The 3D graph is used to visually display a
picture of the roots where the surface
touches the xy plane.

8. Use the Trace tool to explore the function
values at x=1 and y=0.
106 Activities

Summary
Note that zc is zero for each of the function values in steps 7–9. Thus, the
complex zeros 1,Li, i of the polynomial x3Nx2+xN1 can be visualized with
the three points where the graph of the modulus surface touches the xy
plane.

Solving a Standard Annuity Problem
This activity can be used to find the interest rate, starting principal,
number of compounding periods, and future value of an annuity.

Finding the Interest Rate of an Annuity
Perform the following steps to find the interest rate (i) of an annuity
where the starting principal (p) is 1,000, number of compounding periods
(n) is 6, and the future value (s) is 2,000.

9. Use the Trace tool to explore the function
values at x=0 and y=1.

10. Use the Trace tool to explore the function
values at x=0 and y=L1.

1. On the Home screen, enter the equation to
solve for p.

2. Enter the equation to solve for n.
Activities 107

Finding the Future Value of an Annuity
Find the future value of an annuity using the values from the previous
example where the interest rate is 14%.

Computing the Time-Value-of-Money
This activity creates a function that can be used to find the cost of
financing an item. Detailed information about the steps used in this
example can be found in Programming.

3. Enter the equation to solve for i using the
with operator.

solve(s=p†(1+i)^n,i) | s=2000 and p=1000
and n=6

Result: The interest rate is 12.246%.

Note:

• To enter the “with” (|) operator:
@ Í

• Press 8 ¸ to obtain a floating-
point result.

Enter the equation to solve for s.

solve(s=p†(1+i)^n,s) | i=.14 and p=1000 and
n=6

Result: The future value at 14% interest is
2,194.97.
108 Activities

Time-Value-of- Money Function
In the Program Editor, define the following Time-Value-of-Money (tvm)
function where temp1 = number of payments, temp2 = annual interest
rate, temp3 = present value, temp4 = monthly payment, temp5 = future
value, and temp6 = begin- or end-of-payment period (1 = beginning of
month, 0 = end of month).

Note: You can use your computer keyboard to type lengthy text and
then use TI Connect™ software to send it to the TI-89 Titanium.

Finding the Monthly Payment
Find the monthly payment on 10,000 if you make 48 payments at 10%
interest per year.

:tvm(temp1,temp2,temp3,temp4,temp5,temp6)
:Func
:Local tempi,tempfunc,tempstr1
:Ltemp3+(1+temp2/1200temp6)temp4((1N(1+temp2/1200)^

(Ltemp1))/(temp2/1200))Ntemp5(1+temp2/1200)^(Ltemp1)
!tempfunc

:For tempi,1,5,1
:"temp"&exact(string(tempi))!tempstr1
:If when(#tempstr1=0,false,false,true) Then
:If tempi=2
:Return approx(nsolve(tempfunc=0,#tempstr1) | #tempstr1>0
and

#tempstr1<100)
:Return approx(nsolve(tempfunc=0,#tempstr1))
:EndIf
:EndFor
:Return "parameter error"
:EndFunc

On the Home screen, enter the tvm values to
find pmt.

Result: The monthly payment is 251.53.
Activities 109

Finding the Number of Payments
Find the number of payments it will take to pay off the loan if you could
make a 300 payment each month.

Finding Rational, Real, and Complex Factors
This activity shows how to find rational, real, or complex factors of
expressions. Detailed information about the steps used in this example
can be found in Symbolic Manipulation.

Finding Factors
Enter the expressions shown below on the Home screen.

Simulation of Sampling without Replacement
This activity simulates drawing different colored balls from an urn
without replacing them. Detailed information about the steps used in
this example can be found in Programming.

On the Home screen, enter the tvm values to
find n.

Result: The number of payments is 38.8308.

1. factor(x^3N5x) ¸ displays a rational
result.

2. factor(x^3+5x) ¸ displays a rational
result.

3. factor(x^3N5x,x) ¸ displays a real
result.

4. cfactor(x^3+5x,x) ¸ displays a complex
result.
110 Activities

Sampling-without- Replacement Function
In the Program Editor, define drawball() as a function that can be
called with two parameters. The first parameter is a list where each
element is the number of balls of a certain color. The second parameter is
the number of balls to select. This function returns a list where each
element is the number of balls of each color that were selected.

Sampling without Replacement
Suppose an urn contains n1 balls of a color, n2 balls of a second color, n3
balls of a third color, etc. Simulate drawing balls without replacing them.

Using Vectors to Determine Velocity
A small fishing boat leaves from the south bank of the Allegheny River
and heads at a 80° angle with an engine speed of 20 knots. However, the
eastward force of the current carries the boat along so it actually travels
at a 60° angle with the shore.

How fast is the current, and how fast does the boat actually travel?

:drawball(urnlist,drawnum)
:Func
:Local templist,drawlist,colordim,

numballs,i,pick,urncum,j
:If drawnum>sum(urnlist)
:Return “too few balls”
:dim(urnlist)!colordim
:urnlist!templist
:newlist(colordim)!drawlist
:For i,1,drawnum,1
:sum(templist)!numballs
:rand(numballs)!pick
(continued in next column)

:For j,1,colordim,1
:cumSum(templist)!urncum
:If pick  urncum[j] Then
:drawlist[j]+1!drawlist[j]
:templist[j]N1!templist[j]
:Exit
:EndIf
:EndFor
:EndFor
:Return drawlist
:EndFunc

1. Enter a random seed using the RandSeed
command.

2. Assuming the urn contains 10 red balls and
25 white balls, simulate picking 5 balls at
random from the urn without replacement.
Enter drawball({10,25},5).

Result: 2 red balls and 3 white balls.
Activities 111

1. Set the modes for Page 1 as shown in this
screen. (Show angles in degrees instead of
radians and display all digits with a floating
decimal point.)

Press: 3 D D D. On the Angle option,
select 2:DEGREE. On the Display Digits
option, select E:FLOAT.

2. Enter vectors describing the initial path of
the boat, water current, and resultant path
of the boat.

Store these vectors as i, c, and r. Use the
value a for the unknown speed of the
current. Use the value b for the speed of the
boat.

Enter:

[20,80¡]!i

[a,0¡]!c

[b,60°]!r

Vectors are commonly written in either polar or
rectangular form, so it is useful to convert polar
vectors into rectangular form.

3. Define function p2r.

Enter: Define p2r(x)=[x[1,1]*cos(x[1,2]),
x[1,1]*sin(x[1,2])]
112 Activities

When converted to rectangular form, the sum
of vectors i and c equals the resultant vector r.

4. Using function p2r, convert vectors i, c, and
r to rectangular form.

Enter:

p2r(i)!i

p2r(c)!c

p2r(r)!r

Because the vectors are equal, the x-coordinate
of i+c must equal the x-coordinate of the
resultant vector r. Likewise, the y-coordinate of
i+c must equal the y-coordinate of resultant
vector r.

5. Set up two equations involving vectors i+c
and r.

• Equation 1 sets the x-coordinates equal
to each other.

• Equation 2 sets the y-coordinates equal.

Store these equations into eq1 and eq2,
respectively. Enter:

i[1,1]+c[1,1]=r[1,1]!eq1

i[1,2]+c[1,2]=r[1,2]!eq2

6. Solve eq2 for b to calculate the actual
speed of the boat.

solve(eq2,b)

7. Substitute the known value of b into eq1,
and solve eq1 for a to determine a, the
speed of the eastward traveling current.

solve(eq1,a) | b

The boat travels at a speed of 22.7 knots, and
the water current is approximately 7.9 knots.
Activities 113

114 Activities

4

Connectivity

Connecting Two Units
The TI-89 Titanium comes with a cable that lets you connect two units.
Once connected, you can transmit information between two units. A USB
unit-to-unit cable is included with the TI-89 Titanium; use the calculator’s
USB port with this cable.

Note: The TI-89 Titanium features both a USB port and an I/O port, so
you can connect TI graphing calculators with either type of link port.
However, using the I/O port requires the I/O unit-to-unit cable (sold
separately) or the USB Silver Edition cable (also sold separately), which is
used to connect to a computer.

Connecting before Sending or Receiving
Using firm pressure, insert one end of the cable into the link port of each
unit. Either unit can send or receive, depending on how you set them up
from the VAR-LINK screen.

You can link a TI-89 Titanium or Voyage™ 200 to another TI-89 Titanium,
Voyage™ 200, TI-89, or TI-92 Plus.

Two TI-89 Titanium calculators linked together

USB Port USB unit-to-unit cable

USB Port
Connectivity 115

Position so that the USB symbols face each other; then insert the
connector.

A TI-89 Titanium and a Voyage™ 200 linked together

USB unit-to-unit
cable

I/O Port

I/O Port
I/O unit-to-unit
cable
116 Connectivity

A TI-89 Titanium and a TI-89 linked together

Transmitting Variables, Flash Applications, and
Folders
Transmitting variables is a convenient way to share any variable listed on
the VAR-LINK screen — functions, programs, etc. You can also transmit
Flash applications (Apps) and folders.

Setting Up the Units
Flash applications will transfer only between certain units. For example,
you can transfer an App from a TI-89 Titanium to another TI-89 Titanium,
or from a TI-89 Titanium to a TI-89.

During transmission, a progress bar is displayed in the status line of the
receiving unit. When transmission is complete, the VAR-LINK screen is
updated on the receiving unit.

Note: Before transferring a purchased App, the receiving unit must have
the appropriate certificate, if required. A certificate is a file that is
generated by TI. Free and concept Apps do not require a certificate.

Rules for Transmitting Variables, Flash Applications, or
Folders
Unlocked and unarchived variables that have the same name on both the
sending and receiving units will be overwritten from the sending unit.

TI-89

I/O Port

I/O Port
I/O unit-to-unit cable
Connectivity 117

Locked variables that have the same name on both the sending and
receiving units must be unlocked on the receiving unit before they can
be overwritten from the sending unit. If archived variables have the same
names on both the sending and receiving units, a message asks you to
confirm that you will allow the variables to be overwritten.

Canceling a Transmission
From either the sending or receiving unit:

If you select: What happens:

Unlocked variable The variable is transmitted to the current folder
and it remains unlocked on the receiving unit.

Locked variable The variable is transmitted to the current folder
and it remains locked on the receiving unit.

Archived variable The variable is transmitted to the current folder
and it remains archived on the receiving unit.

Unlocked Flash
application

If the receiving unit has the correct certification,
the Flash application is transmitted. It remains
unlocked on the receiving unit.

Locked Flash
application

If the receiving unit has the correct certification,
the Flash application is transmitted. It remains
locked on the receiving unit.

Unlocked Folder The folder and its selected contents are
transmitted. The folder remains unlocked on the
receiving unit.

Locked Folder The folder and its selected contents are
transmitted. The folder becomes unlocked on
the receiving unit.

1. Press ´.

An error message is displayed.

2. Press N or ¸.
118 Connectivity

Common Error and Notification Messages

Shown on: Message and Description:

Sending unit

This is displayed after several seconds if:

• A cable is not attached to the sending unit’s
link port.
– or –

• A receiving unit is not attached to the other
end of the cable.
– or –

• The receiving unit is not set up to receive.

Press N or ¸ to cancel the transmission.

Note: The sending unit may not always display this
message. Instead, it may remain BUSY until you
cancel the transmission.

Sending unit

The receiving unit does not have the correct
certification for the operating system (OS) or Flash
application being sent.
Connectivity 119

Deleting Variables, Flash Applications, or Folders
1. Press 2 ° to display the VAR-LINK screen.

2. Select the variables, folders, or Flash applications to delete.

• To select a single variable, Flash application, or folder, move the
cursor to highlight it and press † to place a checkmark (Ÿ)
beside it.

– If on the default VAR-LINK screen, this selects the folder and
its contents. Collapsed folders become expanded when
selected.

– If selecting a Flash App (from the F7 tab), this selects the
App folder and its contents. A checkmark appears beside
the folder, but not beside the contents. Collapsed Flash App
folders do not automatically become expanded.

Note: You cannot delete the Main folder.

Receiving unit

The receiving unit has a variable with the same
name as the specified variable being sent.

• To overwrite the existing variable, press ¸.
(By default, Overwrite = YES.)

• To store the variable to a different name, set
Overwrite = NO. In the New Name input box,
type a variable name that does not exist in the
receiving unit. Then press ¸ twice.

• To skip this variable and continue with the next
one, set Overwrite = SKIP and press ¸.

• To cancel the transmission, press N.

Receiving unit

The receiving unit does not have enough memory
for what is being sent. Press N or ¸ to cancel
the transmission.

Shown on: Message and Description:

New Name is active only if you
change Overwrite to NO.
120 Connectivity

• To select multiple variables, Flash applications, or folders
highlight each one and press † to place a checkmark (Ÿ) beside
it. Use † again to deselect any that you do not want to
transmit.

• To select all variables, Flash applications, or folders use
‡ All 1:Select All.

3. Press ƒ and choose 1:Delete.
– or –
Press 0. A confirmation message appears.

4. Press ¸ to confirm the deletion.

Where to Get Flash Applications (Apps)
For up-to-date information about available Flash applications, check the
Texas Instruments Web site at education.ti.com.

Many Apps no longer require a certificate. If you try to transfer an App
from one unit to another and receive an Unlicensed OS or Flash
application message, try downloading the App again from the Texas
Instruments Web site at education.ti.com.

You can download a Flash application and/or certificate from the Texas
Instruments Web site to a computer, and use a to install the application
or certificate on your TI-89 Titanium.

For Flash App installation instructions, see education.ti.com/guides.

Transmitting Variables under Program Control
You can use a program containing GetCalc and SendCalc to transmit a
variable from one device to another.

SendCalc sends a variable to the link port, where a linked device can
receive the variable. The linked device must be on the Home screen or
must execute GetCalc from a program.

You can use optional parameters with the SendCalc or GetCalc command
to specify either the USB port or I/O port. (See Appendix A for details.) If
you do not include these parameters, the TI-89 Titanium communicates
through the USB port.

The “Chat” Program
The following program uses GetCalc and SendCalc. The program sets up
two loops that let the linked devices take turns sending and
receiving/displaying a variable named msg. InputStr lets each user enter
a message in the msg variable
Connectivity 121

http://education.ti.com/
http://education.ti.com/
http://education.ti.com/guides

Notes:
Ê Sets up this unit to receive and display the variable msg.
Ë Then lets this user enter a message in msg and send it.
Ì Loop executed by the unit that receives the first message.
Í Lets this user enter a message in msg and send it.
Î Then sets up this unit to receive and display msg.
Ï Loop executed by the unit that sends the first message.
To synchronize GetCalc and SendCalc, the loops are arranged so that the receiving
unit executes GetCalc while the sending unit is waiting for the user to enter a
message.

Running the Program
This procedure assumes that:

• The two devices are linked with the connecting cable.

• The Chat program is loaded on both devices.

– Use each device’s Program Editor to enter the program.
– or –

:Chat()
:Prgm
:ClrIO
:Disp "On first unit to send,","
enter 1;","On first to receive,"

:InputStr " enter 0",msg
:If msg="0" Then
: While true
: GetCalc msg
: Disp msg
: InputStr msg
: SendCalc msg
: EndWhile
:Else
: While true
: InputStr msg
: SendCalc msg
: GetCalc msg
: Disp msg
: EndWhile
:EndIf
:EndPrgm

Ê

Ë
Ì

Í

Î
Ï

122 Connectivity

– Enter the program on one device and then use VAR-LINK to
transmit the program variable to the other device.

To run the program on both devices:

1. On the Home screen of each device, enter chat().

2. When each device displays its initial prompt, respond as shown
below.

3. Take turns typing a message and pressing ¸ to send the variable
msg to the other device.

Stopping the Program
Because the Chat program sets up an infinite loop on both devices, press
´ (on both devices) to break the program. If you press N to
acknowledge the error message, the program stops on the Program I/O
screen. Press ‡ or N to return to the Home screen.

Upgrading the Operating System (OS)
You can upgrade the OS on your TI-89 Titanium using your computer. You
can also transfer the OS from one unit to another identical model (for
example, from a TI-89 Titanium to a TI-89 Titanium or from a Voyage™
200 to a Voyage™ 200).

Installing OS software resets all device memory to the original factory
settings. This means that all user-defined variables (in both RAM and the
user data archive), functions, programs, lists, and folders (except the
Main folder) will be deleted. It is possible that Flash applications could
also be deleted. You should use TI Connect software to back up your data
to your computer before installing a new OS on your calculator.

See the important information concerning batteries before performing
an OS upgrade.

Important Operating System Download Information
New batteries should be installed before beginning an OS download.

On the: Type:

Device that will send the first
message.

1 and press ¸.

Device that will receive the first
message.

0 and press ¸.
Connectivity 123

When in OS download mode, the Automatic Power Down™ (APD™)
feature does not function. If you leave your device in download mode for
an extended time before you actually start the downloading process,
your batteries may become depleted. You will then need to replace the
depleted batteries with new batteries before downloading.

If you accidentally interrupt the transfer before it is complete, you will
need to reinstall the OS. Again, remember to install new batteries before
downloading.

Backing Up Your Unit Before an Operating System
Installation
When you install an OS upgrade, the installation process:

• Deletes all user-defined variables (in both RAM and the user data
archive), functions, programs, and folders.

• Could delete all Flash applications.

• Resets all system variables and modes to their original factory
settings. This is equivalent to using the MEMORY screen to reset all
memory.

To retain any existing variables or Flash applications, do the following
before installing the upgrade:

• Important: Install new batteries.

• Transmit the variables or Flash applications to another device.
– or –

• Use a USB cable or TI Connectivity Cable USB and TI Connect™
software (education.ti.com/downloadticonnect) to send the variables
and/or Flash applications to a computer.

Where to Get Operating System Upgrades
For up-to-date information about available OS upgrades, check the Texas
Instruments Web site at education.ti.com/downloadticonnect.

You can download an OS upgrade or Flash application from the Texas
Instruments Web site to a computer, and use a USB computer cable to
install the OS or application on your TI-89 Titanium.

For complete information, refer to the instructions on the web.

Transferring the Operating System
OS software will transfer only from a TI-89 Titanium to a TI-89 Titanium,
TI-89 to a TI-89, from a Voyage™ 200 to a Voyage™ 200, or from a
TI-92 Plus to a TI-92 Plus.
124 Connectivity

http://education.ti.com/downloadticonnect
http://education.ti.com/downloadticonnect

To transfer the Operating System (OS) from unit to unit:

1. Link two like units together, for example, a TI-89 Titanium to a TI-89
Titanium; or a Voyage™ 200 to a Voyage™ 200.

2. On the receiving and the sending unit, press 2 ° to display
the VAR-LINK screen.

3. On the receiving and the sending unit, press … Link to display the
menu options.

4. On the receiving unit, select 5:Receive OS.

A warning message displays. Press N to halt the process, or press
¸ to proceed. Pressing ¸, displays VAR-LINK: WAITING TO
RECEIVE and BUSY in the status line of the receiving unit.

5. On the sending unit, select 4:Send OS.

A warning message displays. Press N to halt the process, or press
¸ to start the transmission.

Important:
• For each receiving unit, remember to back up information as

necessary and install new batteries.

• Be sure both the sending and receiving units are in the VAR-LINK
screen.

During the transfer, the receiving unit shows how the transfer is
progressing. When the transfer is complete:

• The sending unit returns to the VAR-LINK screen.

• The receiving unit returns to either the Apps desktop or the Home
screen. You may need to use 8 | (lighten) or 8 « (darken) to
adjust the contrast.

Do Not Attempt to Cancel an Operating System Transfer
After the transfer starts, the receiving unit’s existing OS is effectively
deleted. If you interrupt the transfer before it is complete, the receiving
unit will not operate properly. You will then need to reinstall the OS
upgrade.

If You are Upgrading the Operating System on Multiple
Units
To perform an OS upgrade on multiple units, download and install the
OS into one unit and then transfer the OS upgrade from one unit to
another. This method is faster than installing it on each unit via a
computer. OS upgrades are released free of charge and you do not need
to obtain a certificate before you download or install them.
Connectivity 125

Error Messages
Most error messages are displayed on the sending unit. Depending on
when the error occurs during the transfer process, you may see an error
message on the receiving unit.

Collecting and Transmitting ID Lists
The VAR-LINK screen … 6:Send ID List menu option allows collection of
electronic ID numbers from individual TI-89 Titanium, TI-89, Voyage™
200, or TI-92 Plus devices.

ID Lists and Group Certificates
The ID list feature provides a convenient way to collect device IDs for
group purchase of commercial applications. After the IDs are collected,
transmit them to Texas Instruments so a group certificate can be issued.

Error Message Description

The sending and receiving units are not
connected properly, or the receiving unit is not
set up to receive.

The certificate on the receiving unit is not
valid for the operating system (OS) or App on
the sending unit. You must obtain and install a
valid certificate.

If the App no longer requires a certificate, you
can download it again from the Texas
Instruments Web site at education.ti.com and
then install the App again on your calculator.

An error occurred during the transfer. The
current OS in the receiving unit is corrupted.
You must reinstall the product software from a
computer.

Replace the batteries on the unit displaying
this message.
126 Connectivity

http://education.ti.com/

A group certificate allows distribution of purchased software to multiple
TI-89 Titanium, TI-89, Voyage™ 200, or TI-92 Plus units. The software can
be loaded, deleted from, and reloaded to the devices as often as needed
for as long as the software remains listed in the group certificate. You
may add new ID numbers and/or new commercial applications to a group
certificate.

Collecting ID Lists
You can use one device to collect all of the IDs, or use several collection
units and then consolidate their ID lists onto one device.

To send an ID number from one device to another, first connect two units
by using a USB unit-to-unit cable or I/O unit-to-unit cable.

Notes:

• You cannot view the ID list on the sending or collecting units.

• Each time an ID list is successfully sent from one device to another, the
ID list is automatically deleted from the sending unit.

Step: On the: Do this:

1. Collecting unit
(Receiving unit)

Display the Home screen. Press:
@ "

"

2. Sending unit a. Press 2 ° to display the VAR-LINK
screen.

b. Press … Link and select 6:Send ID List.

The sending unit adds a copy of its unique ID
number to the collection unit’s ID list. The
sending unit always retains its own ID
number, which cannot be deleted from the
device.

3. Additional units Repeat steps 1 and 2 until all the IDs are
collected onto one device.

Depending on available memory in the
collection device, it is possible to collect over
4,000 IDs.
Connectivity 127

• If an ID is collected from a device twice, the duplicate ID is
automatically deleted from the list.

Clearing the ID List
The ID list remains on the collection device after it is uploaded to the
computer. You can then use the collection device to upload the list to
other computers.

To clear the ID list from the collection unit:

1. Press 2 ° to display the VAR-LINK screen.

Compatibility among the TI-89 Titanium,
Voyage™ 200, TI-89, and TI-92 Plus
In general, TI-89 Titanium, TI-89, Voyage™ 200, and TI-92 Plus data and
programs are compatible with each other, with a few exceptions.

Most functions of the TI-89 Titanium are compatible with the TI-89,
Voyage™ 200, and TI-92 Plus. The TI-89 Titanium and the TI-89 are
similar, except that the TI-89 Titanium has more memory (more room for
Apps and user archive) and the TI-89 Titanium has a USB port. The
Voyage™ 200 is the same as the TI-92 Plus except it has more memory,
and thus more room for applications (Apps).

All data is compatible among the TI-89 Titanium, TI-89, Voyage™ 200,
and TI-92 Plus, but some programs written for one may not run or may
not run the same on the other because of differences in the device’s
screen sizes and keyboards and the USB port on the TI-89 Titanium.

Other incompatibilites can occur because of different version the
operating system. To download the latest version of the operating
system, visit the Texas Instruments Web site at
education.ti.com/downloadticonnect.

2. Press ƒ Manage and select
A:Clear ID List.
128 Connectivity

http://education.ti.com/downloadticonnect

Link Transmission Table

To &
From (

TI-89
Titanium TI-89

Voyage™
200 TI-92 Plus

TI-89
Titanium

OS
Apps
Variables

Apps
Variables

Variables Variables

TI-89 Apps
Variables

OS
Apps
Variables

Variables Variables

Voyage™
200

Variables Variables OS
Apps
Variables

Apps
Variables

TI-92 Plus Variables Variables Apps
Variables

OS
Apps
Variables
Connectivity 129

130 Connectivity

5

Memory and Variable Management

Checking and Resetting Memory
The MEMORY screen shows the amount of memory (in bytes) used by all
variables in each data type, regardless of whether the variables are
stored in RAM or the user data archive. You can also use this screen to
reset the memory.

Displaying the MEMORY Screen
Press 2 ;. (The numbers on your MEMORY screen may vary from
those shown.)

Prgm/Asn: Includes programs written for the TI-89 Titanium as well as
any assembly-language programs you have loaded.
History: Size of history pairs saved in the Home screen’s history area.
FlashApp: Size of Flash applications.
RAM free: Free space in RAM.
Flash ROM free: Free space in Flash ROM.

Note: To display the size of individual variables and determine if they are
in the user data archive, use the VAR-LINK screen.

To close the screen, press ¸. To reset the memory, use the following
procedure.
Memory and Variable Management 131

Resetting the Memory
From the MEMORY screen:

Important: To delete individual (instead of all) variables, use
VAR-LINK.

3. When prompted for confirmation, press ¸.

The TI-89 Titanium displays a message when the reset is complete.

Note: To cancel the reset, press N instead of ¸.

4. Press ¸ to acknowledge the message.

Displaying the VAR-LINK Screen
The VAR-LINK screen lists the variables and folders that are currently
defined. After displaying the screen, you can manipulate the variables
and/or folders.

Displaying the VAR-LINK Screen
Press 2 °. By default, the VAR-LINK screen lists all user-defined
variables in all folders and with all data types.

1. Press ƒ.

2. Select the applicable item.

Item Description

RAM 1:All RAM: Resetting RAM erases all data and
programs from RAM.

2:Default: Resets all system variables and modes to
their original factory settings. This does not affect
any user-defined variables, functions, or folders.

Flash ROM 1:Archive: Resetting Archive erases all data and
programs from Flash ROM.

2:Flash Apps: Resetting Flash Apps erases all Flash
applications from Flash ROM.

3:Both: Resetting both erases all data, programs,
and Flash applications from Flash ROM.

All Memory Resetting will delete all data, programs, and Flash
applications from RAM and Flash ROM.
132 Memory and Variable Management

Ê Folder names (alphabetically listed)
Ë Shows installed Flash applications
Ì Size in bytes
Í Data type
Î Variable names (alphabetically listed)

To scroll through the list:

• Press D or C. (Use 2 D or 2 C to scroll one page at a time.)

– or –

• Type a letter. If there are any variable names that start with that
letter, the cursor moves to highlight the first of those variable
names.

Note: Type a letter repeatedly to cycle through the names that start with
that letter.

This... Indicates this...

4 Collapsed folder view (to right of folder name).

6 Expanded folder view (to right of folder name).

6 You can scroll for more variables and/or folders (in
bottom left corner of screen).

Ÿ If selected with †.

Œ Locked

û Archived

Ë

Ì

Ê

ÍÎ
Memory and Variable Management 133

Variable Types as Listed on VAR-LINK

Types not listed above are miscellaneous data types used by software
applications.

Closing the VAR-LINK Screen
To close the VAR-LINK screen and return to the current application, use
¸ or N as described below.

Manipulating Variables and Folders with VAR-LINK
On the VAR-LINK screen, you can show the contents of a variable. You
can also select one or more listed items and manipulate them by using
the operations in this section.

Showing the Contents of a Variable
You can show all variable types except ASM, DATA, GDB, and variables
created by Flash Apps. For example, you must open a DATA variable in
the Data/Matrix Editor.

Type Description

ASM Assembly-language program

DATA Data

EXPR Expression (includes numeric values)

FUNC Function

GDB Graph database

LIST List

MAT Matrix

PIC Picture of a graph

PRGM Program

STR String

TEXT Text Editor session

Press: To:

¸ Paste the highlighted variable or folder name to the
cursor location in the current application.

N Return to the current application without pasting the
highlighted name.
134 Memory and Variable Management

1. On VAR-LINK, move the cursor to highlight the variable.

3. To return to VAR-LINK, press any key.

Note: You cannot edit the contents from this screen.

Selecting Items from the List
For other operations, select one or more variables and/or folders.

Note: Press either A or B to toggle between expanded or collapsed view
when you have a folder highlighted.

Folders and Variables
Folders give you a convenient way to manage variables by organizing
them into related groups.

2. Press:
@ 2 ˆ

If you highlight a folder, the screen shows
the number of variables in that folder.

To select: Do this:

A single variable or
folder

Move the cursor to highlight the item, then press
†.

A group of variables
or folders

Highlight each item and press †. A Ÿ is
displayed to the left of each selected item. (If you
select a folder, all variables in that folder are
selected.) Use † to select or deselect an item.

All folders and all
variables

Press B to expand the folder, then press ‡ All
and select 1:Select All.

Choosing 3:Select Current selects the last set of
items transmitted to your unit during the current
VAR-LINK session.

Choosing 4:Expand All or 5:Collapse All expands
or collapses your folders or Flash applications.
Memory and Variable Management 135

The TI-89 Titanium has one built-in folder named MAIN. Unless you
create other folders and designate a user-created folder as the current
folder, all variables are stored in the MAIN folder by default. A system
variable or a variable with a reserved name can be stored in the MAIN
folder only.

By creating additional folders, you can store independent sets of user-
defined variables (including user-defined functions). For example, you
can create separate folders for different TI-89 Titanium applications
(Math, Text Editor, etc.) or classes. You can store a user-defined variable
in any existing folder.

The user-defined variables in one folder are independent of the variables
in any other folder. Therefore, folders can store separate sets of variables
with the same names but different values.

Example of variables that
can be stored in MAIN only

Window variables
(xmin, xmax, etc.)

Table setup variables
(TblStart, @Tbl, etc.)

Y= Editor functions
(y1(x), etc.)

MAIN
System variables
User-defined

a=1, b=2, c=3
f(x)=x³+x²+x

ALG102
User-defined

b=5, c=100
f(x)=sin(x)+cos(x)

DAVE
User-defined

a=3, b=1, c=2
f(x)=x²+6

MATH
User-defined

a=42, c=6
f(x)=3x²+4x+25

Name of current folder

Variables
136 Memory and Variable Management

You cannot create a folder within another folder.

The system variables in the MAIN folder are always directly accessible,
regardless of the current folder.

Note: User-defined variables are stored in the “current folder” unless
you specify otherwise.

Creating a Folder from the VAR-LINK Screen
1. Press 2 °.

3. Type a unique folder name up to eight characters, and press ¸
twice.

After you create a new folder from VAR-LINK, that folder is not
automatically set as the current folder.

Creating a Folder from the Home Screen
Enter the NewFold command on the Home screen.

Setting the Current Folder from the Home Screen
Enter the setFold function on the Home screen.

When you execute setFold, it returns the name of the folder that was
previously set as the current folder.

2. Press ƒ Manage and select
5:Create Folder.

Folder name to create. This new folder is set
automatically as the current folder.

NewFold folderName

setFold is a function, which requires you to
enclose the folder name in parentheses.

setFold (folderName)
Memory and Variable Management 137

Setting the Current Folder from the MODE Dialog Box
1. Press 3.

4. Select the applicable folder. Either:

• Highlight the folder name and press ¸.

– or –

• Press the corresponding number or letter for that folder.

5. Press ¸ to save your changes and close the dialog box.

Renaming Variables or Folders
Remember, if you use † to select a folder, the variables in that folder are
selected automatically. As necessary, use † to deselect individual
variables.

1. On VAR-LINK, select the variables and/or folders.

2. Press ƒ Manage and select 3:Rename.

Using Variables in Different Folders
You can access a user-defined variable or function that is not in the
current folder. Specify the complete pathname instead of only the
variable name.

A pathname has the form:

folderName \ variableName
– or –
folderName \ functionName

2. Highlight the Current Folder setting.

3. Press B to display a menu of existing
folders.

Note: To cancel the menu or exit the dialog
box without saving any changes, press N.

3. Type a unique name, and press ¸ twice.

If you selected multiple items, you are
prompted to enter a new name for each
one.
138 Memory and Variable Management

For example:

To see a list of existing folders and variables, press 2 °. On the
VAR-LINK screen, you can highlight a variable and press ¸ to paste
that variable name to the open application's entry line. If you paste a
variable name that is not in the current folder, the pathname
(folderName\variableName) is pasted.

Listing Only a Specified Folder and/or Variable Type, or
Flash application
If you have a lot of variables, folders, or Flash applications, it may be
difficult to locate a particular variable. By changing VAR-LINK’s view, you
can specify the information you want to see.

From the VAR-LINK screen:

If Current Folder = MAIN Folders and Variables

1. Press „ View.

2. Highlight the setting you want to change,
and press B. This displays a menu of valid
choices. (To cancel a menu, press N.)

View — Allows you to choose variables,
Flash applications, or system variables to
view.

Note: To list system variables (window
variables, etc.), select 3:System

Folder — Always lists 1:All and 2:main, but
lists other folders only if you have created
them.

MAIN
a=1
f(x)=x³+x²+x

MATH
a=42
f(x)=3x²+4x+25
Memory and Variable Management 139

3. Select the new setting.

4. When you are back on the VAR-LINK VIEW screen, press ¸.

The VAR-LINK screen is updated to show only the specified folder,
variable type, or Flash application.

Copying or Moving Variables from One Folder to Another
You must have at least one folder other than MAIN. You cannot use
VAR-LINK to copy variables within the same folder.

1. On VAR-LINK, select the variables.

2. Press ƒ Manage and select 2:Copy or 4:Move.

4. Press ¸. The copied or moved variables retain their original
names.

Note: To copy a variable to a different name in the same folder, use
9 (such as a1!a2) or the CopyVar command from the Home
screen.

Locking or Unlocking Variables Folders, or Flash
Applications
When a variable is locked, you cannot delete, rename, or store to it.
However, you can copy, move, or display its contents. When a folder is
locked, you can manipulate the variables in the folder (assuming the
variables are not locked), but you cannot delete the folder. When a Flash
application is locked, you cannot delete it.

1. On VAR-LINK, select the variables, folders, or Flash application.

Var Type — Lists the valid variable types.

$ — indicates that you can scroll for
additional variable types.

3. Select the destination folder.
140 Memory and Variable Management

2. Press ƒ Manage and select 6:Lock or 7:UnLock.

Deleting a Folder from the VAR-LINK Screen
When you delete a folder from the VAR-LINK screen, all of the variables
in that folder are also deleted. You cannot delete the MAIN folder.

Deleting a Variable or a Folder from the Home Screen
Before deleting a folder from the Home screen, you must first delete all
the variables stored in that folder.

• To delete a variable, enter the DelVar command on the calculator
Home screen.

DelVar var1 [, var2] [, var3] ...

• To delete an empty folder, enter the DelFold command on the
calculator Home screen.

DelFold folder1 [, folder2] [, folder3] ...

Note: You cannot delete the MAIN folder.

Œ indicates a locked variable or folder in
RAM.

û indicates an archived variable, which is
locked automatically.

1. Press 2 °.

2. Press † to select the folder(s) to delete.
(The folder's variables become selected
automatically.)

3. Press ƒ 1:Delete or 0.

4. Press ¸ to confirm the deletion of the
folder and all its variables.
Memory and Variable Management 141

Pasting a Variable Name to an Application
Suppose you are typing an expression on the Home screen and can’t
remember which variable to use. You can display the VAR-LINK screen,
select a variable from the list, and paste that variable name directly onto
the Home screen’s entry line.

Which Applications Can You Use?
From the following applications, you can paste a variable name to the
current cursor location.

• Home screen, Y= Editor, Table Editor, or Data/Matrix Editor — The
cursor must be on the entry line.

• Text Editor, Window Editor, Numeric Solver, or Program Editor — The
cursor can be anywhere on the screen.

You can also paste a variable name to the current cursor location in many
Flash applications.

Procedure
Starting from an application listed above:

If you paste a variable name that is not in the current folder, the
variable’s pathname is pasted.

1. Position the cursor where you want to insert
the variable name.

2. Press 2 °.

3. Highlight the applicable variable.

Note: You can also highlight and paste
folder names.

4. Press ¸ to paste the variable name.

Note: This pastes the variable’s name, not
its contents. Use 2 £, instead of
2 °, to recall a variable’s contents.

5. Finish typing the expression.

sin(|

sin(a1|

sin(a1)|

sin(class\a2
Assuming that CLASS is not the current folder, this is pasted
if you highlight the a2 variable in CLASS.
142 Memory and Variable Management

Archiving and Unarchiving a Variable
To archive or unarchive one or more variables interactively, use the
VAR-LINK screen. You can also perform these operations from the Home
screen or a program.

Why Would You Want to Archive a Variable?
The user data archive lets you:

• Store data, programs, or any other variables to a safe location where
they cannot be edited or deleted inadvertently.

• Create additional free RAM by archiving variables. For example:

– You can archive variables that you need to access but do not
need to edit or change, or variables that you are not using
currently but need to retain for future use.

Note: You cannot archive variables with reserved names or
system variables.

– If you acquire additional programs for your TI-89 Titanium,
particularly if they are large, you may need to create additional
free RAM before you can install those programs.

Additional free RAM can improve performance times for certain types of
calculations.

From the VAR-LINK Screen
To archive or unarchive:

1. Press 2 ° to display the VAR-LINK screen.

2. Select one or more variables, which can be in different folders. (You
can select an entire folder by selecting the folder name.)

Note: To select a single variable, highlight it. To select multiple
variables, highlight each variable and press † Ÿ.

3. Press ƒ and select either:

8:Archive Variable
– or –
9:Unarchive Variable

If you select 8:Archive Variable, the variables
are moved to the user data archive.

û = archived variables
Memory and Variable Management 143

You can access an archived variable just as you would any locked variable.
For all purposes, an archived variable is still in its original folder; it is
simply stored in the user data archive instead of RAM.

Note: An archived variable is locked automatically. You can access the
variable, but you cannot edit or delete it.

From the Home Screen or a Program
Use the Archive and Unarchiv commands:

Archive variable1, variable2, …

Unarchiv variable1, variable2, …

If a Garbage Collection Message Is Displayed
If you use the user data archive extensively, you may see a Garbage
Collection message. This occurs if you try to archive a variable when there
is not enough free archive memory. However, the TI-89 Titanium will
attempt to rearrange the archived variables to make additional room.

Responding to the Garbage Collection Message

After garbage collection, depending on how much additional space is
freed, the variable may or may not be archived. If not, you can unarchive
some variables and try again.

Why not Perform Garbage Collection Automatically,
without a Message?
The message:

• Lets you know why an archive will take longer than usual. It also
alerts you that the archive may fail if there is not enough memory.

• Can alert you when a program is caught in a loop that repetitively
fills the user data archive. Cancel the archive and investigate the
reason.

When you see the message to the right:

• To continue archiving, press ¸.

– or –

• To cancel, press N.
144 Memory and Variable Management

Why Is Garbage Collection Necessary?
The user data archive is divided into sectors. When you first begin
archiving, variables are stored consecutively in sector 1. This continues to
the end of the sector. If there is not enough space left in the sector, the
next variable is stored at the beginning of the next sector. Typically, this
leaves an empty block at the end of the previous sector.

Each variable that you archive is stored in the first empty block large
enough to hold it.

Note: An archived variable is stored in a continuous block within a single
sector; it cannot cross a sector boundary.

This process continues to the end of the last sector. Depending on the
size of individual variables, the empty blocks may account for a
significant amount of space.

Note: Garbage collection occurs when the variable you are archiving is
larger than any empty block.

How Unarchiving a Variable Affects the Process
When you unarchive a variable, it is copied to RAM but it is not actually
deleted from user data archive memory.

variable B

variable C

variable A

variable D

Depending on its size,
variable D is stored in
one of these locations.

Sector 1

Sector 3

Sector 2

Empty
block
Memory and Variable Management 145

Unarchived variables are “marked for deletion,” meaning they will be
deleted during the next garbage collection.

If the MEMORY Screen Shows Enough Free Space
Even if the MEMORY screen shows enough free space to archive a
variable, you may still get a Garbage Collection message.

The Garbage Collection Process
The garbage collection process:

• Deletes unarchived variables from the user data archive.

• Rearranges the remaining variables into consecutive blocks.

This TI-89 Titanium memory screen shows free
space that will be available after all “marked for
deletion” variables are deleted.

When you unarchive a variable, the Flash ROM
free amount increases immediately, but the
space is not actually available until after the
next garbage collection.

variable A

variable D

After you unarchive
variables B and C, they
continue to take up space.

Sector 1

Sector 2

Sector 3

variable A

variable D

Sector 1

Sector 2
146 Memory and Variable Management

Memory Error When Accessing an Archived
Variable
An archived variable is treated the same as a locked variable. You can
access the variable, but you cannot edit or delete it. In some cases,
however, you may get a Memory Error when you try to access an
archived variable.

What Causes the Memory Error?
The Memory Error message is displayed if there is not enough free RAM
to access the archived variable. This may cause you to ask, “If the variable
is in the user data archive, why does it matter how much RAM is
available?” The answer is that the following operations can be
performed only if a variable is in RAM.

• Opening a text variable in the Text Editor.

• Opening a data variable, list, or matrix in the Data/Matrix Editor.

• Opening a program or function in the Program Editor.

• Running a program or referring to a function.

Note: A temporary copy lets you open or execute an archived variable.
However, you cannot save any changes to the variable.

So that you don’t have to unarchive variables unnecessarily, the TI-89
Titanium performs a “behind-the scenes” copy. For example, if you run a
program that is in the user data archive, the TI-89 Titanium:

1. Copies the program to RAM.

2. Runs the program.

3. Deletes the copy from RAM when the program is finished.

The error message is displayed if there is not enough free RAM for the
temporary copy.

Note: Except for programs and functions, referring to an archived
variable does not copy it. If variable ab is archived, it is not copied if you
perform 6ùab.

Correcting the Error
To free up enough RAM to access the variable:

1. Use the VAR-LINK screen (2 °) to determine the size of the
archived variable that you want to access.

2. Use the MEMORY screen (2 ;) to check the RAM free size.

3. Free up the needed amount of memory by:
Memory and Variable Management 147

• Deleting unnecessary variables from RAM.

• Archiving large variables or programs (moving them from RAM
to the user data archive).

Note: Typically, the RAM free size must be larger than the archived
variable.
148 Memory and Variable Management

... 150

... 154

age™ 200 function and instruction
lculator software applications (Apps)

mSqr viewing window:

qr:Circle 1,2,3 ¸

Example

ation of the function or
tion.

A

Name of the function or instruction.

Key or menu for entering the name.
You can also type the name.

Syntax line shows the order and the type of
arguments that you supply. Be sure to separate
multiple arguments with a comma (,).

Appendix A:
Functions and Instructions

Quick-Find Locator
Alphabetical Listing of Operations

This section describes the syntax and action of each TI-89 Titanium/ Voy
that is included in the operating system (OS). See modules relating to ca
for functions and instructions specific to those Apps.

Circle CATALOG

Circle x, y, r [, drawMode]

Draws a circle with its center at window
coordinates (x, y) and with a radius of r.

x, y, and r must be real values.

If drawMode = 1, draws the circle (default).
If drawMode = 0, turns off the circle.
If drawMode = -1, inverts pixels along the circle.

Note: Regraphing erases all drawn items.

In a Zoo

ZoomS

Arguments are shown in italics.
Arguments in [] brackets are
optional. Do not type the brackets.

Explan
instruc
Appendix A: Functions and Instructions 149

158 comDenom() 161
170 expand() 184

) 192 getNum() 193
221 randPoly() 227
253 tExpand() 253

273 G() (sum) 273
157 d() 172
188 fMin() 188
210 nInt() 212
234 taylor() 252

158 Circle 159
160 CyclePic 170
179 DrawParm 179
180 DrwCtour 180
188 Graph 195
201 LineTan 201
211 PtChg 221
222 ptTest() 222
222 PxlCrcl 222
223 PxlOff 223
223 PxlText 223
227 RclPic 227
238 StoGDB 247
248 Trace 256
261 ZoomData 262
263 ZoomIn 263
264 ZoomPrev 264
264 ZoomStd 265
265

266 ù (multiply) 266
269 ^ (power) 268
165 cumSum() 168
178 exp4list() 184
202 list4mat() 202
207 mid() 208
211 polyEval() 219
229 rotate() 230
246 SortD 246

nium / Voyage™ 200 functions
l groups along with the page
ribed.
| ("with") 277 cFactor()
cSolve() 166 cZeros
factor() 186 getDenom(
nSolve() 214 propFrac()
solve() 243 tCollect()
zeros() 260

‰() (integrate) 272 Π() (product)
arcLen() 156 avgRC()
deSolve() 174 fMax()
limit() 200 nDeriv()
' (prime) 275 seq()

AndPic 155 BldData
ClrDraw 160 ClrGraph
DrawFunc 179 DrawInv
DrawPol 179 DrawSlp
FnOff 188 FnOn
Line 201 LineHorz
LineVert 202 NewPic
PtOff 221 PtOn
PtText 222 PxlChg
PxlHorz 222 PxlLine
PxlOn 223 pxlTest()
PxlVert 224 RclGDB
RplcPic 231 Shade
StoPic 248 Style
XorPic 259 ZoomBox
ZoomDec 262 ZoomFit
ZoomInt 263 ZoomOut
ZoomRcl 264 ZoomSqr
ZoomSto 265 ZoomTrig

+ (add) 265 ì (subtract)
à (divide) 267 ë (negate)
augment() 156 crossP()
dim() 177 dotP()
left() 200 @list()
mat4list() 207 max()
min() 209 newList()
product() 220 right()
shift() 239 SortA
sum() 249

Quick-Find Locator

This section lists the TI-89 Tita
and instructions in functiona
numbers where they are desc

Algebra

Calculus

Graphics

Lists
150 Appendix A: Functions and Instructions

266 ù (multiply) 266
269 % (percent) 269
273 ^ (power) 268
274 ¡, ', " 275
276 10^() 276
157 4Cylind 170
173 4DMS 178
219 4Rect 228
154 and 154
156 ceiling() 158
163 cosê() 163
164 cot() 164
165 cothê() 165
166 csch() 166
181 e^() 181
187 fPart() 190
197 int() 198
199 isPrime() 199
203 log() 204
209 mod() 209
213 P4Rx() 216
274 R4Pq() 226
227 remain() 228
230 sec() 232
232 sechê() 233
240 sin() 241
242 sinhê() 242
251 tanh() 251
254 @tmpCnv() 255

266 ù (multiply) 266
269 .+ (dot add) 268
269 . / (dot divide) 269
268 augment() 156
161 crossP() 165
176 diag() 176
178 eigVc() 181
187 identity() 196
206 mat4list() 207
207 median() 207
209 mRowAdd() 209
213 product() 220
226 ref() 228
231 rowNorm() 231
232 simult() 240
249 sum() 249
257 variance() 257
+ (add) 265 ì (subtract)
à (divide) 267 ë (negate)
! (factorial) 271 ‡() (sqr. root)
¡ (degree) 274 (angle)
_ (underscore) 275 4 (convert)
0b, 0h 278 4Bin
4DD 172 4Dec
4Hex 196 4Polar
4Sphere 246 abs()
angle() 155 approx()
conj() 162 cos
cosh() 164 coshê()
cotê() 165 coth()
csc() 165 cscê()
coshê() 166 E
exact() 183 floor()
gcd() 190 imag()
intDiv() 198 iPart()
lcm() 200 ln()
max() 207 min()
nCr() 210 nPr()
P4Ry() 216 r (radian)
R4Pr() 226 real()
rotate() 230 round()
secê() 232 sech()
shift() 239 sign()
sinê() 241 sinh()
tan() 251 tanê()
tanhê() 252 tmpCnv()
xê 276

+ (add) 265 ì (subtract)
à (divide) 267 ë (negate)
.. (dot subt.) 268 . (dot mult.)
.^ (dot power) 269 ^ (power)
colDim() 161 colNorm()
cumSum() 168 det()
dim() 177 dotP()
eigVl() 182 Fill
list4mat() 202 LU
max() 207 mean()
min() 209 mRow()
newMat() 211 norm()
QR 224 randMat()
rowAdd() 231 rowDim()
rowSwap() 231 rref()
stdDev() 247 subMat()
T 250 unitV()
xê 276

Math

Matrices
Appendix A: Functions and Instructions 151

270 < 270
271 ≥ 271
277 ¦ (comment) 278
156 Archive 156
160 ClockOn 160
160 ClrHome 161
161 CopyVar 162
169 Custom 169
172 Define 173
174 Dialog 177
178 DispHome 178
180 Else 182
182 EndDlog 182
182 EndIf 182
182 EndTBar 182
182 entry() 183
184 For 189
190 Get 190
191 getDate() 192
192 getFold() 192
193 getTime() 193
194 getTmZn() 194
195 Goto 195
197 InputStr 198
199 Lbl 199
204 Lock 204
209 NewFold 211
213 or 215
216 PassErr 218
220 Prgm 220
229 Request 229
229 Send 233
233 setDate() 234
234 setGraph() 234
236 setTime() 236
237 startTmr() 246
247 Style 248
250 Text 253
253 Title 254
256 Unarchiv 257
258 While 258
= 270 ≠
≤ 271 >
(indirection) 273 ! (store)
and 154 ans()
checkTmr() 159 ClockOff
ClrErr 160 ClrGraph
ClrIO 161 ClrTable
CustmOff 169 CustmOn
Cycle 169 dayOfWk()
DelFold 174 DelVar
Disp 177 DispG
DispTbl 178 DropDown
ElseIf 182 EndCustm
EndFor 182 EndFunc
EndLoop 182 EndPrgm
EndTry 182 EndWhile
Exec 183 Exit
format() 189 Func
GetCalc 191 getConfg()
getDtFmt() 192 getDtStr()
getKey() 193 getMode()
getTmFmt() 193 getTmStr()
getType() 194 getUnits()
If 196 Input
isClkOn() 199 Item
left() 200 Local
Loop 205 MoveVar
NewProb 212 not
Output 215 part()
Pause 218 PopUp
Prompt 221 Rename
Return 229 right()
SendCalc 233 SendChat
setDtFmt() 234 setFold()
setMode() 235 setTable()
setTmFmt() 237 setTmZn()
setUnits() 237 Stop
switch() 249 Table
Then 253 timeCnv()
Toolbar 255 Try
Unlock 257 when()
xor 259

Programming
152 Appendix A: Functions and Instructions

158 CubicReg 168
186 LinReg 202
205 mean() 207
208 nCr() 210
212 nPr() 213
219 PlotsOn 219
225 QuartReg 225
226 RandSeed 227
243 SortA 246
247 TwoVar 256

273 char() 159
185 format() 189
200 mid() 208
229 rotate() 230
248
! (factorial) 271 BldData
cumSum() 168 ExpReg
LnReg 203 Logistic
median() 207 MedMed
NewData 210 NewPlot
OneVar 214 PlotsOff
PowerReg 220 QuadReg
rand() 226 randNorm()
ShowStat 240 SinReg
SortD 246 stdDev()
variance() 257

& (append) 272 # (indirection)
dim() 177 expr()
inString() 198 left()
ord() 215 right()
shift() 239 string()

Statistics

Strings
Appendix A: Functions and Instructions 153

{p/2,ë p/3}) ¸ {
p

2
p

3}

2ì3i) ¸ 13

z) ¸ |z|

x+yi) ¸ x2+y2

and x‚4 ¸ x‚4

,x 0} and {x‚4,x ë2} ¸
{x ‚ 4 x ë2}

x base mode:

C36 and 0h3D5F ¸ 0h2C16

 base mode:

0101 and 0b100 ¸ 0b100

c base mode:

nd 0b100 ¸ 4

: A binary entry can have up to 32 digits
ounting the 0b prefix). A hexadecimal

 can have up to 8 digits.

ons

 !, and >) are listed at the
rwise specified, all examples
e, and all variables are

ing restraints, approximate
5359 is shown as 3.141...).

portant: Zero, not the letter O.
abs() MATH/Number menu

abs(expression1) ⇒ expression
abs(list1) ⇒ list
abs(matrix1) ⇒ matrix

Returns the absolute value of the argument.

If the argument is a complex number, returns the
number’s modulus.

Note: All undefined variables are treated as real
variables.

abs(

abs(

abs(

abs(

and MATH/Test and MATH/Base menus

Boolean expression1 and expression2 ⇒ Boolean
expression
Boolean list1 and list2 ⇒ Boolean list
Boolean matrix1 and matrix2 ⇒ Boolean

matrix

Returns true or false or a simplified form of the
original entry.

x‚3

{x‚3

integer1 and integer2 ⇒ integer

Compares two real integers bit-by-bit using an
and operation. Internally, both integers are
converted to signed, 32-bit binary numbers.
When corresponding bits are compared, the result
is 1 if both bits are 1; otherwise, the result is 0.
The returned value represents the bit results, and
is displayed according to the Base mode.

You can enter the integers in any number base.
For a binary or hexadecimal entry, you must use
the 0b or 0h prefix, respectively. Without a prefix,
integers are treated as decimal (base 10).

If you enter a decimal integer that is too large for
a signed, 32-bit binary form, a symmetric modulo
operation is used to bring the value into the
appropriate range.

In He

0h7A

In Bin

0b10

In De

37 a

Note
(not c
entry

Alphabetical Listing of Operati

Operations whose names are not alphabetic (such as +,
end of this appendix, starting on page 265. Unless othe
in this section were performed in the default reset mod
assumed to be undefined. Additionally, due to formatt
results are truncated at three decimal places (3.1415926

Im
154 Appendix A: Functions and Instructions

n graphing mode and Y= Editor:

 cos(x) C
ˆ Style = 3:Square
 Style = 3:Square

 = 7:ZoomTrig
Save Copy As...
Picture, Variable =

 sin(x)
ˆ Style = 3:Square
 Style = 3:Square

 checkmark (F4 to
t)
 = 7:ZoomTrig

"

PIC1 ¸ Done

 angle mode:

+2i) ¸ 90

 angle mode:

+i) ¸
p

4

) ¸
+ iy) ¸

 angle mode:

1+2i,3+0i,0ì4i}) ¸
AndPic CATALOG

AndPic picVar[, row, column]

Displays the Graph screen and logically “ANDS”
the picture stored in picVar and the current graph
screen at pixel coordinates (row, column).

picVar must be a picture type.

Default coordinates are (0,0), which is the upper
left corner of the screen.

In functio

y1(x) =
@ 2
H ˆ

„ Zoom
ƒ = 2:
Type =
PIC1

y2(x) =
@ 2
H ˆ

y1 = no
deselec
„ Zoom

@ "
H ¥

AndPic

angle() MATH/Complex menu

angle(expression1) ⇒ expression

Returns the angle of expression1, interpreting
expression1 as a complex number.

Note: All undefined variables are treated as real
variables.

In Degree

angle(0

In Radian

angle(1

angle(z
angle(x

angle(list1) ⇒ list
angle(matrix1) ⇒ matrix

Returns a list or matrix of angles of the elements
in list1 or matrix1, interpreting each element as a
complex number that represents a two-
dimensional rectangular coordinate point.

In Radian

angle({
Appendix A: Functions and Instructions 155

e ans() to generate the Fibonacci
nce on the Home screen, press:

1
1

 « 2 ± A 0 2 ¸ 2
3
5

ox(p) ¸ 3.141...

ox({sin(p),cos(p)}) ¸
{0. ë1.}

ox([‡(2),‡(3)]) ¸
[1.414... 1.732...]

rctest ¸ 10
ive arctest ¸ Done
ctest ¸ 50
rctest ¸

chiv arctest ¸ Done
rctest ¸ 15

en(cos(x),x,0,p) ¸3.820...

en(f(x),x,a,b) ¸

⌡
⌠

a

b

(
d

dx(f(x)))ñ+1 dx

en({sin(x),cos(x)},x,0,p)
{3.820... 3.820...}

ent({1,ë3,2},{5,4}) ¸
{1 ë3 2 5 4}
ans() 2 ± key

ans() ⇒ value
ans(integer) ⇒ value

Returns a previous answer from the Home screen
history area.

integer, if included, specifies which previous
answer to recall. Valid range for integer is from 1
to 99 and cannot be an expression. Default is 1,
the most recent answer.

To us
seque

1 ¸
1 ¸
2 ±
¸
¸

approx() MATH/Algebra menu

approx(expression) ⇒ value

Returns the evaluation of expression as a decimal
value, when possible, regardless of the current
Exact/Approx mode.

This is equivalent to entering expression and
pressing ¥ ¸ on the Home screen.

appr

approx(list1) ⇒ list
approx(matrix1) ⇒ matrix

Returns a list or matrix where each element has
been evaluated to a decimal value, when
possible.

appr

appr

Archive CATALOG

Archive var1 [, var2] [, var3] …

Moves the specified variables from RAM to the
user data archive memory.

You can access an archived variable the same as
you would a variable in RAM. However, you
cannot delete, rename, or store to an archived
variable because it is locked automatically.

To unarchive variables, use Unarchiv.

10!a
Arch
5ùar
15!a

N
Unar
15!a

arcLen() MATH/Calculus menu

arcLen(expression1,var,start,end) ⇒ expression

Returns the arc length of expression1 from start to
end with respect to variable var.

Regardless of the graphing mode, arc length is
calculated as an integral assuming a function
mode definition.

arcL

arcL

arcLen(list1,var,start,end) ⇒ list

Returns a list of the arc lengths of each element
of list1 from start to end with respect to var.

arcL

augment() MATH/Matrix menu

augment(list1, list2) ⇒ list

Returns a new list that is list2 appended to the
end of list1.

augm
156 Appendix A: Functions and Instructions

4]!M1 ¸ [
1 2
3 4]

2 ¸ [
5
6]

(M1,M2) ¸ [
1 2 5
3 4 6]

2 ¸ [5 6]

(M1;M2) ¸






1 2

3 4
5 6

(x),x,h) ¸
f(x+h) - f(x)

h

in(x),x,h)|x=2 ¸
sin(h+2) - sin(2)

h

^2ìx+2,x) ¸
2.ø(x - .4995)

^2ìx+2,x,.1) ¸
2.ø(x - .45)

^2ìx+2,x,3) ¸ 2ø(x+1)

n ¸ 0b100000000

in ¸ 0b11111
augment(matrix1, matrix2) ⇒ matrix
augment(matrix1; matrix2) ⇒ matrix

Returns a new matrix that is matrix2 appended to
matrix1. When the “,” character is used, the
matrices must have equal row dimensions, and
matrix2 is appended to matrix1 as new columns.
When the “;” character is used, the matrices
must have equal column dimensions, and matrix2
is appended to matrix1 as new rows. Does not
alter matrix1 or matrix2.

[1,2;3,

[5;6]!M

augment

[5,6]!M

augment

avgRC() CATALOG

avgRC(expression1, var [, h]) ⇒ expression

Returns the forward-difference quotient (average
rate of change).

expression1 can be a user-defined function name
(see Func).

h is the step value. If h is omitted, it defaults to
0.001.

Note that the similar function nDeriv() uses the
central-difference quotient.

avgRC(f

avgRC(s

avgRC(x

avgRC(x

avgRC(x

4Bin MATH/Base menu

integer1 4Bin ⇒ integer

Converts integer1 to a binary number. Binary or
hexadecimal numbers always have a 0b or 0h
prefix, respectively.

256 4Bi

0h1F 4B

0b binaryNumber
0h hexadecimalNumber

Without a prefix, integer1 is treated as decimal
(base 10). The result is displayed in binary,
regardless of the Base mode.

If you enter a decimal integer that is too large for
a signed, 32-bit binary form, a symmetric modulo
operation is used to bring the value into the
appropriate range.

A binary number can have up to
32 digits. A hexadecimal number
can have up to 8.

Zero, not the letter O, followed by b or h.
Appendix A: Functions and Instructions 157

ction graphing mode and Radian angle
:

n(x)!y1(x) ¸ Done
n(x)!y2(x) ¸ Done
Std ¸

¥ "

ata ¸ Done
 6 ¸

: The following sample data is from a 3D
.

ing(0.456) ¸ 1.

ing({ë3.1,1,2.5}) ¸
{ë3. 1 3.}

ing([0,ë3.2i;1.3,4]) ¸

[
0
2.

 ë3.øi

4]

tor(a^3ùx^2+aùx^2+a^3+a)

(a + ëi)ø(a + i)ø(x + ëi)ø(x + i)

tor(x^2+4/9) ¸
(3øx + ë2øi)ø(3øx + 2ø i)

9

tor(x^2+3) ¸ xñ + 3

tor(x^2+a) ¸ xñ + a
BldData CATALOG

BldData [dataVar]

Creates data variable dataVar based on the
information used to plot the current graph.
BldData is valid in all graphing modes.

If dataVar is omitted, the data is stored in the
system variable sysData.

Note: The first time you start the Data/Matrix
Editor after using BldData, dataVar or sysData
(depending on the argument you used with
BldData) is set as the current data variable.

The incremental values used for any independent
variables (x in the example to the right) are
calculated according to the Window variable
values.

For information about the increments used to
evaluate a graph, refer to the module that
describes that graphing mode.

In fun
mode

8ùsi
2ùsi
Zoom

@ "
H

BldD
O

3D graphing mode has two independent
variables. In the sample data to the right, notice
that x remains constant as y increments through
its range of values.

Then, x increments to its next value and y again
increments through its range. This pattern
continues until x has incremented through its
range.

Note
graph

ceiling() MATH/Number menu

ceiling(expression1) ⇒ integer

Returns the nearest integer that is ‚ the
argument.

The argument can be a real or a complex number.

Note: See also floor().

ceil

ceiling(list1) ⇒ list
ceiling(matrix1) ⇒ matrix

Returns a list or matrix of the ceiling of each
element.

ceil

ceil

cFactor() MATH/Algebra/Complex menu

cFactor(expression1[, var]) ⇒ expression
cFactor(list1[,var]) ⇒ list
cFactor(matrix1[,var]) ⇒ matrix

cFactor(expression1) returns expression1 factored
with respect to all of its variables over a common
denominator.

expression1 is factored as much as possible toward
linear rational factors even if this introduces new
non-real numbers. This alternative is appropriate
if you want factorization with respect to more
than one variable.

cFac
¸

aø

cFac

cFac

cFac
158 Appendix A: Functions and Instructions

(a^3ùx^2+aùx^2+a^3+a,x)

aø(añ + 1)ø(x + ë i)ø(x + i)

(x^2+3,x) ¸
(x + ‡3ø i)ø(x + ë‡3ø i)

(x^2+a,x) ¸
(x + ‡aøëi)ø(x + ‡aø i)

r(x^5+4x^4+5x^3ì6xì3)

x5 + 4øx4 + 5øx3 ì6øxì3

r(ans(1),x) ¸
965)ø(x +.612)ø(x + 2.13)ø

(x + 1.11 ì 1.07øi)ø
(x + 1.11 + 1.07øi)

) ¸ "&"

) ¸ "A"

r() ¸ 148083315

r(148083315) 34

r()!Timer1

r()!Timer2

r(Timer1)!Timer1Value

r(Timer2)!Timer2Value

Sqr viewing window:

:Circle 1,2,3 ¸
cFactor(expression1,var) returns expression1
factored with respect to variable var.
expression1 is factored as much as possible toward
factors that are linear in var, with perhaps non-
real constants, even if it introduces irrational
constants or subexpressions that are irrational in
other variables.
The factors and their terms are sorted with var as
the main variable. Similar powers of var are
collected in each factor. Include var if
factorization is needed with respect to only that
variable and you are willing to accept irrational
expressions in any other variables to increase
factorization with respect to var. There might be
some incidental factoring with respect to other
variables.

cFactor
¸

cFactor

cFactor

For the AUTO setting of the Exact/Approx mode,
including var also permits approximation with
floating-point coefficients where irrational
coefficients cannot be explicitly expressed
concisely in terms of the built-in functions. Even
when there is only one variable, including var
might yield more complete factorization.
Note: See also factor().

cFacto
¸

cFacto
(x ì.

char() MATH/String menu

char(integer) ⇒ character

Returns a character string containing the
character numbered integer from the
TI-89 Titanium/Voyage™ 200 character set. See
Appendix B for a complete listing of character
codes. The valid range for integer is 0–255.

char(38

char(65

checkTmr() CATALOG

checkTmr(starttime) ⇒ integer

Returns an integer representing the number of
seconds that have elapsed since a timer was
started. starttime is an integer returned from the
startTmr() function.
You can also use a list or matrix of starttime
integers. Valid starttime integers must fall
between 0 and the current time of the clock. You
can run multiple timers simultaneously.
Note: See also startTmr() and timeCnv().

startTm

checkTm

startTm
©
startTm
©
checkTm
©
checkTm

Circle CATALOG

Circle x, y, r [, drawMode]

Draws a circle with its center at window
coordinates (x, y) and with a radius of r.

x, y, and r must be real values.

If drawMode = 1, draws the circle (default).
If drawMode = 0, turns off the circle.
If drawMode = -1, inverts pixels along the circle.

Note: Regraphing erases all drawn items. See
also PxlCrcl.

In a Zoom

ZoomSqr
Appendix A: Functions and Instructions 159

am listing:

arerr()
m
tsOff:FnOff:ZoomStd
 i,0,238
i+xmin!xcord
y
tOn xcord,ln(xcord)
se
f errornum=800 or
errornum=260 Then

ClrErr ¦ clear the error
lse
PassErr ¦ pass on any other
error

ndIf
dTry
For
Prgm
ClockOff CATALOG

ClockOff

Turns the clock OFF.

ClockOn CATALOG

ClockOn

Turns the clock ON.

ClrDraw CATALOG

ClrDraw

Clears the Graph screen and resets the Smart
Graph feature so that the next time the Graph
screen is displayed, the graph will be redrawn.

While viewing the Graph screen, you can clear all
drawn items (such as lines and points) by
pressing † (ReGraph) or pressing:
@ 2ˆ
H ˆ
and selecting 1:ClrDraw.

ClrErr CATALOG

ClrErr

Clears the error status. It sets errornum to zero
and clears the internal error context variables.

The Else clause of the Try...EndTry in the
program should use ClrErr or PassErr. If the
error is to be processed or ignored, use ClrErr. If
what to do with the error is not known, use
PassErr to send it to the next error handler. If
there are no more pending Try...EndTry error
handlers, the error dialog box will be displayed as
normal.

Note: See also PassErr and Try.

Progr

:cle
:Prg
:Plo
:For
:@xù
: Tr
: P
: El
: I

:
: E
:

: E
: En
:End
:End

ClrGraph CATALOG

ClrGraph

Clears any functions or expressions that were
graphed with the Graph command or were
created with the Table command. (See Graph or
Table.)

Any previously selected Y= functions will be
graphed the next time that the graph is displayed.
160 Appendix A: Functions and Instructions

[0,1,2;3,4,5]) ¸ 3

3;4,5,ë6]!mat ¸

[
1 ë2 3
4 5 ë6]

(mat) ¸ 9

nom((y^2+y)/(x+1)^2+y^2+y)
ClrHome CATALOG

ClrHome

Clears all items stored in the entry() and ans()
Home screen history area. Does not clear the
current entry line.

While viewing the Home screen, you can clear the
history area by pressing ƒ and selecting 8:Clear
Home.

For functions such as solve() that return arbitrary
constants or integers (@1, @2, etc.), ClrHome
resets the suffix to 1.

ClrIO CATALOG

ClrIO

Clears the Program I/O screen.

ClrTable CATALOG

ClrTable

Clears all table values. Applies only to the ASK
setting on the Table Setup dialog box.

While viewing the Table screen in Ask mode, you
can clear the values by pressing ƒ and selecting
8:Clear Table.

colDim() MATH/Matrix/Dimensions menu

colDim(matrix) ⇒ expression

Returns the number of columns contained in
matrix.

Note: See also rowDim().

colDim(

colNorm() MATH/Matrix/Norms menu

colNorm(matrix) ⇒ expression

Returns the maximum of the sums of the absolute
values of the elements in the columns in matrix.

Note: Undefined matrix elements are not
allowed. See also rowNorm().

[1,ë2,

colNorm

comDenom()MATH/Algebra menu

comDenom(expression1[,var]) ⇒ expression
comDenom(list1[,var]) ⇒ list
comDenom(matrix1[,var]) ⇒ matrix

comDenom(expression1) returns a reduced ratio of
a fully expanded numerator over a fully expanded
denominator.

comDe
¸

Appendix A: Functions and Instructions 161

Denom((y^2+y)/(x+1)
y^2+y,x) ¸

Denom((y^2+y)/(x+1)
y^2+y,y) ¸

Denom(exprn,abc)!comden
prn) ¸ Done
den((y^2+y)/(x+1)^2+y^2+y)

den(1234x^2ù(y^3ìy)+2468x
y^2ì1)) ¸

1234øxø(xøy + 2)ø(yñì1)

(1+2i) ¸ 1 ì2ø i

([2,1ì3i;ë i,ë7]) ¸





2 1+3ø i

i ë7

(z) z

(x+iy) x + ë iøy

a ¸ x + y
 ¸ 10
Var a,b ¸ Done
¸ y + 10
ar x ¸ Done

x + y
y + 10
comDenom(expression1,var) returns a reduced
ratio of numerator and denominator expanded with
respect to var. The terms and their factors are
sorted with var as the main variable. Similar powers
of var are collected. There might be some incidental
factoring of the collected coefficients. Compared to
omitting var, this often saves time, memory, and
screen space, while making the expression more
comprehensible. It also makes subsequent
operations on the result faster and less likely to
exhaust memory.

com
^2+

com
^2+

If var does not occur in expression1,
comDenom(expression1,var) returns a reduced
ratio of an unexpanded numerator over an
unexpanded denominator. Such results usually save
even more time, memory, and screen space. Such
partially factored results also make subsequent
operations on the result much faster and much less
likely to exhaust memory.

com
(ex
com
¸

Even when there is no denominator, the comden
function is often a fast way to achieve partial
factorization if factor() is too slow or if it exhausts
memory.

Hint: Enter this comden() function definition and
routinely try it as an alternative to comDenom()
and factor().

com
ù(

conj() MATH/Complex menu

conj(expression1) ⇒ expression
conj(list1) ⇒ list
conj(matrix1) ⇒ matrix

Returns the complex conjugate of the argument.

Note: All undefined variables are treated as real
variables.

conj

conj

conj

conj

CopyVar CATALOG

CopyVar var1, var2

Copies the contents of variable var1 to var2. If var2
does not exist, CopyVar creates it.

Note: CopyVar is similar to the store instruction
(!) when you are copying an expression, list,
matrix, or character string except that no
simplification takes place when using CopyVar.
You must use CopyVar with non-algebraic
variable types such as Pic and GDB variables.

x+y!
10!x
Copy
a!c
DelV
b ¸
c ¸
162 Appendix A: Functions and Instructions

 angle mode:

4)ô) ¸
‡2
2

 ¸
‡2
2

60,90}) ¸ {1 1/2 0}

 angle mode:

) ¸
‡2
2

) ¸
‡2
2

 angle mode:

,5,3;4,2,1;6,ë2,1]) ¸







.212… .205… .121…

.160… .259… .037…

.248… ë.090… .218…

 angle mode:

) ¸ 0

 angle mode:

0,.2,.5}) ¸

{p2 1.369... 1.047...}
cos() @ 2X key H X key

cos(expression1) ⇒ expression
cos(list1) ⇒ list

cos(expression1) returns the cosine of the
argument as an expression.

cos(list1) returns a list of the cosines of all
elements in list1.

Note: The argument is interpreted as either a
degree or radian angle, according to the current
angle mode setting. You can use ó or ô to
override the angle mode temporarily.

In Degree

cos((p/

cos(45)

cos({0,

In Radian

cos(p/4

cos(45¡

cos(squareMatrix1) ⇒ squareMatrix

Returns the matrix cosine of squareMatrix1. This is
not the same as calculating the cosine of each
element.

When a scalar function f(A) operates on
squareMatrix1 (A), the result is calculated by the
algorithm:

1. Compute the eigenvalues (l i) and
eigenvectors (Vi) of A.

 squareMatrix1 must be diagonalizable. Also, it
cannot have symbolic variables that have not
been assigned a value.

2. Form the matrices:

B =









l1 0 … 0

0 l2 … 0
0 0 … 0
0 0 … ln

 and X = [V1,V2, … ,Vn]

3. Then A = X B Xê and f(A) = X f(B) Xê. For
example, cos(A) = X cos(B) Xêwhere:

cos (B) =

cos()

cos()

cos()

λ
λ

λ

1

2

0 0

0 0

0 0 0

0 0

K

K

K

K n



















All computations are performed using floating-
point arithmetic.

In Radian

cos([1

cosê () @ ¥Rkey H 2Rkey

cosê (expression1) ⇒ expression
cosê (list1) ⇒ list

cosê (expression1) returns the angle whose cosine
is expression1 as an expression.

cosê (list1) returns a list of the inverse cosines of
each element of list1.

Note: The result is returned as either a degree or
radian angle, according to the current angle
mode setting.

In Degree

cosê(1

In Radian

cosê({
Appendix A: Functions and Instructions 163

dian angle mode and Rectangular
lex format mode:

([1,5,3;4,2,1;6,ë2,1])



4…+.064…øi ë 1.490…+2.105…øi …

25…+1.515…øi .623…+.778…øi …
083…+2.632…øi 1.790…ì 1.271…øi …

(1.2) ¸ 1.810...

({0,1.2}) ¸ {1 1.810...}

dian angle mode:

([1,5,3;4,2,1;6,ë2,1])



421.255 253.909 216.905

327.635 255.301 202.958
226.297 216.623 167.628

ê(1) ¸ 0

ê({1,2.1,3}) ¸
{0 1.372... coshê(3)}

dian angle mode and Rectangular
lex format mode:

ê([1,5,3;4,2,1;6,ë2,1])



5…+1.734…øi ë.009…ì 1.490…øi …

…ì.725…øi 1.662…+.623…øi …
22…ì 2.083…øi 1.267…+1.790…øi …

egree angle mode:

45) ¸ 1

adian angle mode:

{1,2.1,3}) ¸

1

tan(1)
 L.584… 1

tan(3)
cosê(squareMatrix1) ⇒ squareMatrix

Returns the matrix inverse cosine of squareMatrix1.
This is not the same as calculating the inverse
cosine of each element. For information about the
calculation method, refer to cos().

squareMatrix1 must be diagonalizable. The result
always contains floating-point numbers.

In Ra
comp

cosê
¸



1.73
ë.7
ë 2.

cosh() MATH/Hyperbolic menu

cosh(expression1) ⇒ expression
cosh(list1) ⇒ list

cosh (expression1) returns the hyperbolic cosine
of the argument as an expression.

cosh (list1) returns a list of the hyperbolic cosines
of each element of list1.

cosh

cosh

cosh(squareMatrix1) ⇒ squareMatrix

Returns the matrix hyperbolic cosine of
squareMatrix1. This is not the same as calculating
the hyperbolic cosine of each element. For
information about the calculation method, refer
to cos().

squareMatrix1 must be diagonalizable. The result
always contains floating-point numbers.

In Ra

cosh
¸





coshê () MATH/Hyperbolic menu

coshê (expression1) ⇒ expression
coshê (list1) ⇒ list

coshê (expression1) returns the inverse hyperbolic
cosine of the argument as an expression.

coshê (list1) returns a list of the inverse
hyperbolic cosines of each element of list1.

cosh

cosh

coshê(squareMatrix1) ⇒ squareMatrix

Returns the matrix inverse hyperbolic cosine of
squareMatrix1. This is not the same as calculating
the inverse hyperbolic cosine of each element. For
information about the calculation method, refer
to cos().

squareMatrix1 must be diagonalizable. The result
always contains floating-point numbers.

In Ra
comp

cosh
¸



2.52
.486
ë.3

cot() MATH/Trig menu

cot(expression1) ⇒ expression
cot(list1) ⇒ list

Returns the cotangent of expression1 or returns a
list of the cotangents of all elements in list1.

Note: The argument is interpreted as either a
degree or radian angle, according to the current
angle mode.

In D

cot(

In R

cot(
164 Appendix A: Functions and Instructions

ee angle mode:

) ¸ 45

an angle mode:

) ¸
p
4

2) ¸ 1.199…

,3.2}) ¸
1

tanh(1)
1.003…

3.5) ¸ .293…

{L2,2.1,6}) ¸

Lln(3)

2 .518…
ln(7/5)

2

{a1,b1},{a2,b2}) ¸
{0 0 a1øb2ìa2øb1}

{0.1,2.2,ë5},{1,ë.5,0})

{ë2.5 ë5. ë2.25}

[1,2,3],[4,5,6]) ¸
[ë3 6 ë3]

[1,2],[3,4]) ¸
[0 0 ë2]

ee angle mode:

) ¸
1

sin(
p
4)

an angle mode:

p/2,p/3}) ¸

1

sin(1)
1 2 ¦ 3

3

cotL1() MATH/Trig menu

cotL1(expression1) ⇒ expression
cotL1(list1) ⇒ list

Returns the angle whose cotangent is
expression1 or returns a list containing the
inverse cotangents of each element of list1.

Note: The result is returned as either a degree or
radian angle, according to the current angle
mode.

In Degr

cotL1(1

In Radi

cotL1(1

coth() MATH/Hyperbolic menu

coth(expression1) ⇒ expression
cot(list1) ⇒ list

Returns the hyperbolic cotangent of expression1
or returns a list of the hyperbolic cotangents of all
elements of list1.

coth(1.

coth({1

cothL1() MATH/Hyperbolic menu

cothL1(expression1) ⇒ expression
cothL1(list1) ⇒ list

Returns the inverse hyperbolic cotangent of
expression1 or returns a list containing the
inverse hyperbolic cotangents of each element of
list1.

cothL1(

cothL1(

crossP() MATH/Matrix/Vector ops menu

crossP(list1, list2) ⇒ list

Returns the cross product of list1 and list2 as a
list.

list1 and list2 must have equal dimension, and the
dimension must be either 2 or 3.

crossP(

crossP(
¸

crossP(vector1, vector2) ⇒ vector

Returns a row or column vector (depending on
the arguments) that is the cross product of vector1
and vector2.

Both vector1 and vector2 must be row vectors, or
both must be column vectors. Both vectors must
have equal dimension, and the dimension must
be either 2 or 3.

crossP(

crossP(

csc() MATH/Trig menu

csc(expression1) ⇒ expression
csc(list1) ⇒ list

Returns the cosecant of expression1 or returns a
list containing the cosecants of all elements in
list1.

In Degr

csc(p/4

In Radi

csc({1,

Appendix A: Functions and Instructions 165

egree angle mode:

1(1) ¸ 90

adian angle mode:

1({1,4,6}) ¸

p
2

sinL1(1/4) sin
L1(1/6)

(3) ¸
1

sinh(3)

({1,2.1,4}) ¸

1

sinh(1)
.248… 1

sinh(4)

 L1(1) ¸ sinh-1(1)

L1({1,2.1,3}) ¸

sinhL1(1) .459… sinhL1(1/3)

ve(x^3=ë1,x) ¸
e(x^3=ë1,x) ¸

ve(x^(1/3)=ë1,x) ¸ false

e(x^(1/3)=ë1,x) ¸ x = ë1

y Digits mode in Fix 2:

t(cSolve(x^5+4x^4+5x
ì6xì3=0,x)) ¸
ve(ans(1),x) ¸
cscL1() MATH/Trig menu

csc-1(expression1) ⇒ expression
csc-1(list1) ⇒ list

Returns the angle whose cosecant is
expression1or returns a list containing the inverse
cosecants of each element of list1.

Note: The result is returned as either a degree or
radian angle, according to the current angle
mode.

In D

cscL

In R

cscL

csch() MATH/Hyperbolic menu

csch(expression1) ⇒ expression
csch(list1) ⇒ list

Returns the hyperbolic cosecant of expression1 or
returns a list of the hyperbolic cosecants of all
elements of list1.

csch

csch

cschL1() MATH/Hyperbolic menu

cschL1(expression1) ⇒ expression
cschL1(list1) ⇒ list

Returns the inverse hyperbolic cosecant of
expression1 or returns a list containing the
inverse hyperbolic cosecants of each element of
list1.

csch

csch

cSolve() MATH/Algebra/Complex menu

cSolve(equation, var) ⇒ Boolean expression

Returns candidate complex solutions of an
equation for var. The goal is to produce
candidates for all real and non-real solutions.
Even if equation is real, cSolve() allows non-real
results in real mode.

Although the TI-89 Titanium/Voyage™ 200
processes all undefined variables that do not end
with an underscore (_) as if they were real,
cSolve() can solve polynomial equations for
complex solutions.

cSol
solv

cSolve() temporarily sets the domain to complex
during the solution even if the current domain is
real. In the complex domain, fractional powers
having odd denominators use the principal rather
than the real branch. Consequently, solutions
from solve() to equations involving such
fractional powers are not necessarily a subset of
those from cSolve().

cSol

solv

cSolve() starts with exact symbolic methods.
Except in EXACT mode, cSolve() also uses
iterative approximate complex polynomial
factoring, if necessary.

Note: See also cZeros(), solve(), and zeros().

Note: If equation is non-polynomial with
functions such as abs(), angle(), conj(), real(),
or imag(), you should place an underscore _
@ ¥
H 2) at the end of var. By default, a
variable is treated as a real value.

Displa

exac
^3

cSol
166 Appendix A: Functions and Instructions

d as real:

conj(z)=1+ i,z) ¸
z=1+ i

ted as complex:

conj(z_)=1+ i,z_) ¸
z_=1− i

e following examples use an
re _

 so that the variables will be
 complex.

u_ùv_ìu_=v_ and
u_,{u_,v_}) ¸

/2 +
3

2
øi and v_=1/2 ì

3

2
øi

/2 ì
3

2
øi and v_=1/2 +

3

2
øi

or u_=0 and v_=0

u_ùv_ìu_=c_ùv_ and
u_,{u_,v_}) ¸

1ì4øc_+1)2

4
 and v_=

1ì4øc_+1
2

ì4øc_ì1)2

4
 and v_=

ë(1ì4øc_ì1)
2

or u_=0 and v_=0

u_ùv_ìu_=v_ and
u_,{u_,v_,w_}) ¸

/2 +
3

2
øi and v_=1/2 ì

3

2
øi

and w_=@1

/2 ì
3

2
øi and v_=1/2 +

3

2
øi

and w_=@1
r u_=0 and v_=0 and w_=@1
If you use var_ , the variable is treated as
complex.

You should also use var_ for any other variables
in equation that might have unreal values.
Otherwise, you may receive unexpected results.

z is treate

cSolve(

z_ is trea

cSolve(

cSolve(equation1 and equation2 [and …],
{varOrGuess1, varOrGuess2 [, …]})
⇒ Boolean expression

Returns candidate complex solutions to the
simultaneous algebraic equations, where each
varOrGuess specifies a variable that you want to
solve for.

Optionally, you can specify an initial guess for a
variable. Each varOrGuess must have the form:

variable
– or –
variable = real or non-real number

For example, x is valid and so is x=3+i.

If all of the equations are polynomials and if you
do NOT specify any initial guesses, cSolve() uses
the lexical Gröbner/Buchberger elimination
method to attempt to determine all complex
solutions.

Note: Th
undersco
@ ¥
H 2
treated as

Complex solutions can include both real and non-
real solutions, as in the example to the right.

cSolve(
v_^2=ë

u_=1

or u_=1

Simultaneous polynomial equations can have
extra variables that have no values, but represent
given numeric values that could be substituted
later.

cSolve(
v_^2=ë

u_=

ë(

or

u_=

ë(1

You can also include solution variables that do
not appear in the equations. These solutions
show how families of solutions might contain
arbitrary constants of the form @k, where k is an
integer suffix from 1 through 255. The suffix
resets to 1 when you use ClrHome or ƒ
8:Clear Home.

For polynomial systems, computation time or
memory exhaustion may depend strongly on the
order in which you list solution variables. If your
initial choice exhausts memory or your patience,
try rearranging the variables in the equations
and/or varOrGuess list.

cSolve(
v_^2=ë

u_=1

or

u_=1

o

Appendix A: Functions and Instructions 167

ve(u_+v_=e^(w_) and u_ìv_=
u_,v_}) ¸

u_=
e
w_

2
 +1/2øi and v_=

e
w_ì i

2

ve(e^(z_)=w_ and w_=z_^2,
z_}) ¸

w_=.494… and z_=ë.703…

ve(e^(z_)=w_ and w_=z_^2,
z_=1+ i}) ¸

w_=.149… + 4.891…øi and
z_=1.588… + 1.540…øi

ction graphing mode.

,2,3}!L1 ¸ {0 1 2 3}
,3,4}!L2 ¸ {0 2 3 4}
cReg L1,L2 ¸ Done
Stat ¸

q(x)"y1(x) ¸ Done
lot 1,1,L1,L2 ¸ Done

um({1,2,3,4}) ¸
{1 3 6 10}

;3,4;5,6]!m1 ¸






1 2

3 4
5 6

um(m1) ¸






1 2

4 6
9 12
If you do not include any guesses and if any
equation is non-polynomial in any variable but all
equations are linear in all solution variables,
cSolve() uses Gaussian elimination to attempt to
determine all solutions.

cSol
i, {

If a system is neither polynomial in all of its
variables nor linear in its solution variables,
cSolve() determines at most one solution using
an approximate iterative method. To do so, the
number of solution variables must equal the
number of equations, and all other variables in
the equations must simplify to numbers.

cSol
{w_,

A non-real guess is often necessary to determine
a non-real solution. For convergence, a guess
might have to be rather close to a solution.

cSol
{w_,

CubicReg MATH/Statistics/Regressions menu

CubicReg list1, list2[, [list3] [, list4, list5]]

Calculates the cubic polynomial regression and
updates all the statistics variables.

All the lists must have equal dimensions except
for list5.

list1 represents xlist.
list2 represents ylist.
list3 represents frequency.
list4 represents category codes.
list5 represents category include list.

Note: list1 through list4 must be a variable name
or c1–c99 (columns in the last data variable
shown in the Data/Matrix Editor). list5 does not
have to be a variable name and cannot be c1–c99
.

In fun

{0,1
{0,2
Cubi
Show

¸
rege
NewP

¥%

cumSum() MATH/List menu

cumSum(list1) ⇒ list

Returns a list of the cumulative sums of the
elements in list1, starting at element 1.

cumS

cumSum(matrix1) ⇒ matrix

Returns a matrix of the cumulative sums of the
elements in matrix1. Each element is the
cumulative sum of the column from top to
bottom.

[1,2

cumS
168 Appendix A: Functions and Instructions

om program listing example.

om program listing example.

listing:

"Lists"
"List1"
"Scores"
"L3"
"Fractions"
"f(x)"
"h(x)"
"Graph"
tm
m

listing:

the integers from 1 to
kipping 50.
p
1,100,1
0

!temp

emp

of temp after execution: 5000
CustmOff CATALOG

CustmOff

Removes a custom toolbar.

CustmOn and CustmOff enable a program to
control a custom toolbar. Manually, you can press
2¾ to toggle a custom toolbar on and
off. Also, a custom toolbar is removed
automatically when you change applications.

See Cust

CustmOn CATALOG

CustmOn

Activates a custom toolbar that has already been
set up in a Custom...EndCustm block.

CustmOn and CustmOff enable a program to
control a custom toolbar. Manually, you can press
2¾ to toggle a custom toolbar on and
off.

See Cust

Custom 2¾key

Custom
block

EndCustm

Sets up a toolbar that is activated when you press
2¾. It is very similar to the ToolBar
instruction except that Title and Item statements
cannot have labels.

block can be either a single statement or a series
of statements separated with the “:” character.

Note: 2¾ acts as a toggle. The first
instance invokes the menu, and the second
instance removes the menu. The menu is
removed also when you change applications.

Program

:Test()
:Prgm
:Custom
:Title
:Item
:Item
:Item
:Title
:Item
:Item
:Title
:EndCus
:EndPrg

Cycle CATALOG

Cycle

Transfers program control immediately to the
next iteration of the current loop (For, While, or
Loop).

Cycle is not allowed outside the three looping
structures (For, While, or Loop).

Program

:¦ Sum
100 s

:0!tem
:For i,
:If i=5
:Cycle
:temp+i
:EndFor
:Disp t

Contents
Appendix A: Functions and Instructions 169

Save three pics named pic1, pic2, and
pic3.

Enter: CyclePic "pic",3,.5,4,ë1

The three pictures (3) will be displayed
automatically—one-half second (.5)
between pictures, for four cycles (4), and
forward and backwards (ë1).

,3] 4Cylind ¸

[2ø‡2
p

4 3]

y Digits mode in Fix 3:

os(x^5+4x^4+5x^3ì6xì3,x)

{ë2.125 ë.612 .965
ë1.114 ì1.073ø i

ë1.114 + 1.073ø i}

eated as real:
os(conj(z)ì1ì i,z) ¸

{1+i}
treated as complex:

os(conj(z_)ì1ì i,z_) ¸
{1ì i}

: The following examples use an
rscore _ (@ ¥ , H 2) so
he variables will be treated as complex.
CyclePic CATALOG

CyclePic picNameString, n [, [wait] , [cycles],
[direction]]

Displays all the PIC variables specified and at the
specified interval. The user has optional control
over the time between pictures, the number of
times to cycle through the pictures, and the
direction to go, circular or forward and
backwards.

direction is 1 for circular or ë 1 for forward and
backwards. Default = 1.

1.

2.

3.

4Cylind MATH/Matrix/Vector ops menu

vector 4Cylind

Displays the row or column vector in cylindrical
form [r∠q, z].

vector must have exactly three elements. It can be
either a row or a column.

[2,2

cZeros() MATH/Algebra/Complex menu

cZeros(expression, var) ⇒ list

Returns a list of candidate real and non-real
values of var that make expression=0. cZeros()
does this by computing
exp8list(cSolve(expression=0,var),var).
Otherwise, cZeros() is similar to zeros().

Note: See also cSolve(), solve(), and zeros().

Displa

cZer
¸

Note: If expression is non-polynomial with
functions such as abs(), angle(), conj(), real(),
or imag(), you should place an underscore _
(@ ¥ , H 2) at the end of var. By
default, a variable is treated as a real value. If
you use var_ , the variable is treated as complex.

You should also use var_ for any other variables
in expression that might have unreal values.
Otherwise, you may receive unexpected results.

z is tr
cZer

z_ is

cZer

cZeros({expression1, expression2 [, …] },
{varOrGuess1,varOrGuess2 [, …] }) ⇒ matrix

Returns candidate positions where the
expressions are zero simultaneously. Each
varOrGuess specifies an unknown whose value you
seek.

Optionally, you can specify an initial guess for a
variable. Each varOrGuess must have the form:

variable
– or –
variable = real or non-real number

For example, x is valid and so is x=3+i.

If all of the expressions are polynomials and you
do NOT specify any initial guesses, cZeros() uses
the lexical Gröbner/Buchberger elimination
method to attempt to determine all complex
zeros.

Note
unde
that t
170 Appendix A: Functions and Instructions

{u_ùv_ìu_ìv_,v_^2+u_},
) ¸







1/2 ì
3

2
øi 1/2 +

3

2
øi

1/2 +
3

2
øi 1/2 ì

3

2
øi

0 0

w 2:

2] ¸





1/2 +

3

2
øi 1/2 ì

3

2
øi

{u_ùv_ìu_ì(c_ùv_),
},{u_,v_}) ¸




4øc_+1)2

4
 1ì4øc_+1

2

4øc_ì1)2

4

ë(1ì4øc_ì1)
2

 0

{u_ùv_ìu_ìv_,v_^2+u_},
w_}) ¸




2 ì
3

2
øi 1/2 +

3

2
øi @1

2 +
3

2
øi 1/2 ì

3

2
øi @1

 0 @1

{u_+v_ì e^(w_),u_ìv_ì i},
) ¸





e

w_

2
 +1/2øi

e
w_ì i

2

{e^(z_)ìw_,w_ìz_^2},
) ¸

[].494… ë.703…

{e^(z_)ìw_,w_ìz_^2},
1+ i}) ¸

]+4.89…øi 1.588…+1.540…øi
Complex zeros can include both real and non-real
zeros, as in the example to the right.

Each row of the resulting matrix represents an
alternate zero, with the components ordered the
same as the varOrGuess list. To extract a row,
index the matrix by [row].

cZeros(
{u_,v_}

Extract ro

ans(1)[

Simultaneous polynomials can have extra
variables that have no values, but represent given
numeric values that could be substituted later.

cZeros(
v_^2+u_




ë(1ì

ë(1ì

0

You can also include unknown variables that do
not appear in the expressions. These zeros show
how families of zeros might contain arbitrary
constants of the form @k, where k is an integer
suffix from 1 through 255. The suffix resets to 1
when you use ClrHome or ƒ 8:Clear Home.

For polynomial systems, computation time or
memory exhaustion may depend strongly on the
order in which you list unknowns. If your initial
choice exhausts memory or your patience, try
rearranging the variables in the expressions
and/or varOrGuess list.

cZeros(
{u_,v_,



1/

1/

0

If you do not include any guesses and if any
expression is non-polynomial in any variable but
all expressions are linear in all unknowns,
cZeros() uses Gaussian elimination to attempt to
determine all zeros.

cZeros(
{u_,v_}

If a system is neither polynomial in all of its
variables nor linear in its unknowns, cZeros()
determines at most one zero using an
approximate iterative method. To do so, the
number of unknowns must equal the number of
expressions, and all other variables in the
expressions must simplify to numbers.

cZeros(
{w_,z_}

A non-real guess is often necessary to determine
a non-real zero. For convergence, a guess might
have to be rather close to a zero.

cZeros(
{w_,z_=

[.149…
Appendix A: Functions and Instructions 171

^3ìx+7,x) ¸ 9xñì1

^3ìx+7,x,2) ¸ 18øx

x)ùg(x),x) ¸

(f(x))øg(x) +
d

 dx(g(x))øf(x)

n(f(x)),x) ¸

cos(f(x))
d

 dx(f(x))

3,x)|x=5 ¸ 75

x^2ùy^3,x),y) ¸ 6øyñøx

2,x,ë1) ¸
xò
3

^2,x^3,x^4},x) ¸
{2øx 3øxñ 4øxò}

fWk(1948,9,6) 2

er values:

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

gree angle mode:

4DD ¸ 1.5ó

2'14.3" 4DD ¸ 45.370...ó

22'14.3",60ó0'0"} 4DD ¸
{45.370... 60}¡

dian angle mode:

4DD ¸ 85.9ó
d() 2=key or MATH/Calculus menu

d(expression1, var [,order]) ⇒ expression
d(list1,var [,order]) ⇒ list
d(matrix1,var [,order]) ⇒ matrix

Returns the first derivative of expression1 with
respect to variable var. expression1 can be a list or
a matrix.

order, if included, must be an integer. If the order
is less than zero, the result will be an anti-
derivative.

d() does not follow the normal evaluation
mechanism of fully simplifying its arguments and
then applying the function definition to these fully
simplified arguments. Instead, d() performs the
following steps:

1. Simplify the second argument only to the
extent that it does not lead to a non-
variable.

2. Simplify the first argument only to the extent
that it does recall any stored value for the
variable determined by step 1.

3. Determine the symbolic derivative of the
result of step 2 with respect to the variable
from step 1.

4. If the variable from step 1 has a stored value
or a value specified by a “with” (|) operator,
substitute that value into the result from
step 3.

d(3x

d(3x

d(f(

d

 dx

d(si

d(x^

d(d(

d(x^

d({x

dayOfWk() CATALOG

dayOfWk(year,month,day) ⇒ integer

Returns an integer from 1 to 7, with each integer
representing a day of the week. Use dayOfWk()
to determine on which day of the week a
particular date would occur.
Note: May not give accurate results for years
prior to 1583 (pre-Gregorian calendar).

Enter the year as a four-digit integer. The month
and day can be either one- or two-digit integers.

dayO

Integ

1 =
2 =
3 =
4 =
5 =
6 =
7 =

4DD MATH/Angle menu

number 4DD ⇒ value
list1 4DD ⇒ list
matrix1 4DD ⇒ matrix

Returns the decimal equivalent of the argument.
The argument is a number, list, or matrix that is
interpreted by the Mode setting in radians or
degrees.

Note: 4DD can also accept input in radians.

In De

1.5ó

45ó2

{45ó

In Ra

1.5
172 Appendix A: Functions and Instructions

 4Dec ¸ 19

ec ¸ 31

g(x,y)=2xì3y ¸ Done
¸ ë4
b:g(a,b) ¸ ë4

h(x)=when(x<2,2x-3,
 ¸ Done

ë9
ë5

eigenvl(a)=
s(det(identity(dim(a)
xùa),x) ¸ Done
([ë1,2;4,3]) ¸
2ø 3 - 1

11
ë(2ø 3 + 1)

11 }

g(x,y)=Func:If x>y Then
 x:Else:Return y:EndIf
c ¸ Done

) ¸ 3
4Dec MATH/Base menu

integer1 4Dec ⇒ integer

Converts integer1 to a decimal (base 10) number.
A binary or hexadecimal entry must always have
a 0b or 0h prefix, respectively.

0b10011

0h1F 4D

0b binaryNumber
0h hexadecimalNumber

Without a prefix, integer1 is treated as decimal.
The result is displayed in decimal, regardless of
the Base mode.

Define CATALOG

Define funcName(arg1Name, arg2Name, ...) =
expression

Creates funcName as a user-defined function. You
then can use funcName(), just as you use built-in
functions. The function evaluates expression using
the supplied arguments and returns the result.

funcName cannot be the name of a system
variable or built-in function.

The argument names are placeholders; you
should not use those same names as arguments
when you use the function.

Note: This form of Define is equivalent to
executing the expression:
expression!funcName(arg1Name,arg2Name).
This command also can be used to define simple
variables; for example, Define a=3.

Define
g(1,2)
1!a:2!

Define
ë2x+3)

h(ë3) ¸
h(4) ¸

Define
cZero
[1])-

eigenvl

{

Define funcName(arg1Name, arg2Name, ...) = Func
block

EndFunc

Is identical to the previous form of Define,
except that in this form, the user-defined function
funcName() can execute a block of multiple
statements.

block can be either a single statement or a series
of statements separated with the “:” character.
block also can include expressions and
instructions (such as If, Then, Else, and For).
This allows the function funcName() to use the
Return instruction to return a specific result.

Note: It is usually easier to author and edit this
form of Function in the program editor rather
than on the entry line.

Define
:Return
:EndFun

g(3,ë7

A binary number can have up to
32 digits. A hexadecimal number
can have up to 8.

Zero, not the letter O, followed by b or h.
Appendix A: Functions and Instructions 173

ne listinpt()=prgm:Local
i,str1,num:InputStr "Enter
me of list",str1:Input
o. of elements",n:For
1,n,1:Input "element
string(i),num:
m!#str1[i]:EndFor:EndPrgm

Done

inpt() ¸Enter name of list

old games ¸ Done
tes the folder games)

old games ¸ Done
tes the folder games)

¸ 2
)^2 ¸ 16
ar a ¸ Done
)^2 ¸ (a + 2)ñ

: To type a prime symbol ('), press
.

lve(y''+2y'+y=x^2,x,y)¸
y=(@1øx+@2)øeë x+xñì4øx+6

t(ans(1))!temp ¸
(@1øx+@2)øeë x+xñì4øx+6

mp,x,2)+2ùd(temp,x)+tempìx^2
0

ar temp ¸ Done
Define progName(arg1Name, arg2Name, ...) = Prgm
block

EndPrgm

Creates progName as a program or subprogram,
but cannot return a result using Return. Can
execute a block of multiple statements.

block can be either a single statement or a series
of statements separated with the “:” character.
block also can include expressions and
instructions (such as If, Then, Else, and For)
without restrictions.

Note: It is usually easier to author and edit a
program block in the Program Editor rather than
on the entry line.

Defi
n,
na
"N
i,
"&
nu
¸

list

DelFold CATALOG

DelFold folderName1[, folderName2] [, folderName3] ...

Deletes user-defined folders with the names
folderName1, folderName2, etc. An error message is
displayed if the folders contain any variables.

Note: You cannot delete the main folder.

NewF
(crea

DelF
(dele

DelVar CATALOG

DelVar var1[, var2] [, var3] ...

Deletes the specified variables from memory.

2!a
(a+2
DelV
(a+2

deSolve() MATH/Calculus menu

deSolve(1stOr2ndOrderOde, independentVar,
dependentVar) ⇒ a general solution

Returns an equation that explicitly or implicitly
specifies a general solution to the 1st- or 2nd-
order ordinary differential equation (ODE). In the
ODE:

• Use a prime symbol (' , press 2È) to
denote the 1st derivative of the dependent
variable with respect to the independent
variable.

• Use two prime symbols to denote the
corresponding second derivative.

The ' symbol is used for derivatives within
deSolve() only. In other cases, use d() .

The general solution of a 1st-order equation
contains an arbitrary constant of the form @k,
where k is an integer suffix from 1 through 255.
The suffix resets to 1 when you use ClrHome or
ƒ 8: Clear Home. The solution of a 2nd-order
equation contains two such constants.

Note
2È

deSo

righ

d(te
¸

DelV
174 Appendix A: Functions and Instructions

(y'=(cos(y))^2ùx,x,y)

tan(y)=

xñ
2

 +@3

ns(1),y) ¸

y=tanê(xñ+2ø@3
2)+@n1øp

 type an @ symbol, press:

§

R

@3=cì1 and @n1=0 ¸

y=tanê(xñ+2ø(cì1)
2)

(yù e^(x)+cos(y))y'!ode

sin(y)=(exøy+cos(y))øy'

(ode and
x,y)!soln ¸

n(y)+yñ)
2

 =ë(exì1)øeëxøsin(y)

0 and y=0 ¸ true

(eq)ìleft(eq),x)/
(eq)ìright(eq),y))
f(eq,x,y) ¸

Done

impdif(soln,x,y) ¸
true

ode,soln ¸ Done

(y''=y^(ë1/2) and
and y'(0)=0,t,y) ¸

2øy3/4

3
 =t

ns(1),y) ¸

y=

22/3ø(3øt)4/3

4
 and t‚0
Apply solve() to an implicit solution if you want
to try to convert it to one or more equivalent
explicit solutions.

deSolve
¸

When comparing your results with textbook or
manual solutions, be aware that different
methods introduce arbitrary constants at different
points in the calculation, which may produce
different general solutions.

solve(a

Note: To

@ ¥
H 2

ans(1)|

deSolve(1stOrderOde and initialCondition,
independentVar, dependentVar)
⇒ a particular solution

Returns a particular solution that satisfies
1stOrderOde and initialCondition. This is usually
easier than determining a general solution,
substituting initial values, solving for the arbitrary
constant, and then substituting that value into
the general solution.

initialCondition is an equation of the form:

dependentVar (initialIndependentValue) =
initialDependentValue

The initialIndependentValue and
initialDependentValue can be variables such as x0
and y0 that have no stored values. Implicit
differentiation can help verify implicit solutions.

sin(y)=
¸

deSolve
y(0)=0,

ë(2øsi

soln|x=

d(right
(d(left
!impdi

ode|y'=

DelVar

deSolve(2ndOrderOde and initialCondition1 and
initialCondition2, independentVar,
dependentVar) ⇒ a particular solution

Returns a particular solution that satisfies
2ndOrderOde and has a specified value of the
dependent variable and its first derivative at one
point.

deSolve
y(0)=0

solve(a

For initialCondition1, use the form:

dependentVar (initialIndependentValue) =
initialDependentValue

For initialCondition2, use the form:

dependentVar' (initialIndependentValue) =
initial1stDerivativeValue
Appendix A: Functions and Instructions 175

lve(w''ì2w'/x+(9+2/x^2)w=
(x) and w(p/6)=0 and
3)=0,x,w) ¸

w=

e
p

3øxøcos(3øx)

10

ì
e
p

6øxøsin(3øx)

10
 +

x⋅ex

10

[a,b;c,d]) ¸ aød ìbøc

[1,2;3,4]) ¸ ë2

identity(3) ìxù[1,ë2,3;
,1;ë6,ë2,7]) ¸

ë(98øxòì55øxñ+ 12øx ì1)

0,1;0,1]!mat1 [
1.E20 1
0 1]

mat1) ¸ 0
mat1,.1) ¸ 1.E20

({2,4,6}) ¸






2 0 0

0 4 0
0 0 6

,8;1,2,3;5,7,9] ¸






4 6 8

1 2 3
5 7 9

(ans(1)) ¸ [4 2 9]
deSolve(2ndOrderOde and boundaryCondition1 and
boundaryCondition2, independentVar,
dependentVar) ⇒ a particular solution

Returns a particular solution that satisfies
2ndOrderOde and has specified values at two
different points.

deSo
xù e^
w(p/

det() MATH/Matrix menu

det(squareMatrix[, tol]) ⇒ expression

Returns the determinant of squareMatrix.

Optionally, any matrix element is treated as zero
if its absolute value is less than tol. This tolerance
is used only if the matrix has floating-point
entries and does not contain any symbolic
variables that have not been assigned a value.
Otherwise, tol is ignored.

• If you use ¥¸ or set the mode to
Exact/Approx=APPROXIMATE, computations
are done using floating-point arithmetic.

• If tol is omitted or not used, the default
tolerance is calculated as:
5Eë 14 ùmax(dim(squareMatrix))
ù rowNorm(squareMatrix)

det(

det(

det(
ë2,4

[1E2

det(
det(

diag() MATH/Matrix menu

diag(list) ⇒ matrix
diag(rowMatrix) ⇒ matrix
diag(columnMatrix) ⇒ matrix

Returns a matrix with the values in the argument
list or matrix in its main diagonal.

diag

diag(squareMatrix) ⇒ rowMatrix

Returns a row matrix containing the elements
from the main diagonal of squareMatrix.

squareMatrix must be square.

[4,6

diag
176 Appendix A: Functions and Instructions

listing:

st()

"This is a dialog box"
t "Your name",Str1
wn "Month you were born",
tring(i),i,1,12),Var1
g
m

1,2}) ¸ 3

ë1,2;ë2,3,5]) ¸ {2 3}

llo") ¸ 5

llo"&" there") ¸ 11

ello" ¸ Hello

s(2.3) ¸ ë.666…

4}!L1 ¸
 ¸ {1 2 3 4}

0_min 4 _hr ¸ 3.ø_hr

 type an underscore (_), press:

 press 2 .
Dialog CATALOG

Dialog
block

EndDlog

Generates a dialog box when the program is
executed.

block can be either a single statement or a series
of statements separated with the “:” character.
Valid block options in the … I/O, 1:Dialog menu
item in the Program Editor are 1:Text, 2:Request,
4:DropDown, and 7:Title.

The variables in a dialog box can be given values
that will be displayed as the default (or initial)
value. If ¸ is pressed, the variables are
updated from the dialog box and variable ok is
set to 1. If N is pressed, its variables are not
updated, and system variable ok is set to zero.

Program

:Dlogte
:Prgm
:Dialog
:Title
:Reques
:Dropdo
seq(s

:EndDlo
:EndPrg

dim() MATH/Matrix/Dimensions menu

dim(list) ⇒ integer

Returns the dimension of list.

dim({0,

dim(matrix) ⇒ list

Returns the dimensions of matrix as a two-
element list {rows, columns}.

dim([1,

dim(string) ⇒ integer

Returns the number of characters contained in
character string string.

dim("He

dim("He

Disp CATALOG

Disp [exprOrString1] [, exprOrString2] ...

Displays the current contents of the Program I/O
screen. If one or more exprOrString is specified,
each expression or character string is displayed
on a separate line of the Program I/O screen.

An expression can include conversion operations
such as 4DD and 4Rect. You can also use the 4
operator to perform unit and number base
conversions.

If Pretty Print = ON, expressions are displayed in
pretty print.

From the Program I/O screen, you can press ‡ to
display the Home screen, or a program can use
DispHome.

Disp "H

Disp co

{1,2,3,
Disp L1

Disp 18

Note: To
@ ¥
H 2
To type 4,
Appendix A: Functions and Instructions 177

ction graphing mode:

am segment:

os(x)!y1(x)
!xmin
xmax
ymin
max
pG

am segment:

p "The result is: ",xx
se "Press Enter to quit"
pHome
Prgm

s(x)!y1(x) ¸
Tbl ¸

gree angle mode:

71 4DMS ¸ 45ó22'15.6"

371,60} 4DMS ¸
{45ó22'15.6" 60ó}

({a,b,c},{d,e,f}) ¸
aød + bøe + cøf

({1,2},{5,6}) ¸ 17
DispG CATALOG

DispG

Displays the current contents of the Graph screen.

In fun

Progr

©
:5ùc
:ë10
:10!
:ë5!
:5!y
:Dis

©

DispHome CATALOG

DispHome

Displays the current contents of the Home screen.

Progr

 ©
:Dis
:Pau
:Dis
:End

DispTbl CATALOG

DispTbl

Displays the current contents of the Table screen.

Note: The cursor pad is active for scrolling. Press
N or ¸ to resume execution if in a
program.

5ùco
Disp

4DMS MATH/Angle menu

expression 4DMS
list 4DMS
matrix 4DMS

Interprets the argument as an angle and displays
the equivalent DMS (DDDDDD¡MM¢SS.ss£) number.
See ¡, ', " on page 275 for DMS (degree, minutes,
seconds) format.

Note: 4DMS will convert from radians to degrees
when used in radian mode. If the input is
followed by a degree symbol (¡), no conversion
will occur. You can use 4DMS only at the end of
an entry line.

In De

45.3

{45.

dotP() MATH/Matrix/Vector ops menu

dotP(list1, list2) ⇒ expression

Returns the “dot” product of two lists.

dotP

dotP
178 Appendix A: Functions and Instructions

,b,c],[d,e,f]) ¸
aød + bøe + cøf

,2,3],[4,5,6]) ¸ 32

n graphing mode and ZoomStd

c 1.25xùcos(x) ¸

n graphing mode and ZoomStd

 1.25xùcos(x) ¸

n graphing mode and ZoomStd

m
t),tùsin(t),0,10,.1 ¸

n graphing mode and ZoomStd

 5ùcos(3ù q),0,3.5,.1
dotP(vector1, vector2) ⇒ expression

Returns the “dot” product of two vectors.

Both must be row vectors, or both must be
column vectors.

dotP([a

dotP([1

DrawFunc CATALOG

DrawFunc expression

Draws expression as a function, using x as the
independent variable.

Note: Regraphing erases all drawn items.

In functio
window:

DrawFun

DrawInv CATALOG

DrawInv expression

Draws the inverse of expression by plotting x
values on the y axis and y values on the x axis.

x is the independent variable.

Note: Regraphing erases all drawn items.

In functio
window:

DrawInv

DrawParm CATALOG

DrawParm expression1, expression2
[, tmin] [, tmax] [, tstep]

Draws the parametric equations expression1 and
expression2, using t as the independent variable.

Defaults for tmin, tmax, and tstep are the current
settings for the Window variables tmin, tmax,
and tstep. Specifying values does not alter the
window settings. If the current graphing mode is
not parametric, these three arguments are
required.

Note: Regraphing erases all drawn items.

In functio
window:

DrawPar
tùcos(

DrawPol CATALOG

DrawPol expression[, qmin] [, qmax] [, qstep]

Draws the polar graph of expression, using q as
the independent variable.

Defaults for qmin, qmax, and qstep are the current
settings for the Window variables qmin, qmax,
and qstep. Specifying values does not alter the
window settings. If the current graphing mode is
not polar, these three arguments are required.

Note: Regraphing erases all drawn items.

In functio
window:

DrawPol
¸

Appendix A: Functions and Instructions 179

ction graphing mode and ZoomStd
w:

Slp 2,3,ë2 ¸

ialog program listing example.

 graphing mode:

)x^2+(1/5)y^2ì10!z1(x,y)

Done
xmin:10!xmax ¸ 10
ymin:10!ymax ¸ 10
zmin:10!zmax ¸ 10
ontour ¸ 0
tour {L9,L4.5,L3,0,4.5,9}

e the cursor to change the viewing
gle. Press 0 (zero) to return to the
iginal view.

 toggle between different graph format
les, press:
 Í

 F

ess X, Y, or Z to look down the
rresponding axis.
DrawSlp CATALOG

DrawSlp x1, y1, slope

Displays the graph and draws a line using the
formula yì y1=slopeø (xì x1).

Note: Regraphing erases all drawn items.

In fun
windo

Draw

DropDown CATALOG

DropDown titleString, {item1String, item2String, ...},
varName

Displays a drop-down menu with the name
titleString and containing the items 1:item1String,
2:item2String, and so forth. DropDown must be
within a Dialog...EndDlog block.

If varName already exists and has a value within
the range of items, the referenced item is
displayed as the default selection. Otherwise, the
menu’s first item is the default selection.

When you select an item from the menu, the
corresponding number of the item is stored in the
variable varName. (If necessary, DropDown
creates varName.)

See D

DrwCtour CATALOG

DrwCtour expression
DrwCtour list

Draws contours on the current 3D graph at the z
values specified by expression or list. The 3D
graphing mode must already be set. DrwCtour
automatically sets the graph format style to
CONTOUR LEVELS.

By default, the graph automatically contains the
number of equally spaced contours specified by
the ncontour Window variable. DrwCtour
draws contours in addition to the defaults.

To turn off the default contours, set ncontour to
zero, either by using the Window screen or by
storing 0 to the ncontour system variable.

In 3D

(1/5
¸

L10!
L10!
L10!
0!nc
DrwC
¸

• Us
an
or

 To
sty
@
H

• Pr
co
180 Appendix A: Functions and Instructions

23000.

4.1í15 ¸ 4.1í15

 ¸ 30000

e

¸ 2.718...

 ¸ e9

.,0,.5}) ¸
{e 2.718... 1 1.648...}

,3;4,2,1;6,ë2,1]) ¸







782.209 559.617 456.509

680.546 488.795 396.521
524.929 371.222 307.879

gular complex format mode:

;3,L6,9;2,L5,7]!m1 ¸







ë1 2 5

3 ë6 9
2 ë5 7

1) ¸


 .767… .767…

 .573…+.052…øi .573…ì.052…øi

 .262…+.096…øi .262…ì.096…øi
í @ ^ key H 2^key

mantissaEexponent

Enters a number in scientific notation. The
number is interpreted as mantissa × 10exponent.

Hint: If you want to enter a power of 10 without
causing a decimal value result, use 10^integer.

2.3í4 ¸

2.3í9+

3ù10^4

e^() @ ¥ skey H 2s key

e^(expression1) ⇒ expression

Returns e raised to the expression1 power.

Note: On the TI-89 Titanium, pressing ¥ s to
display e^(is different from pressing j [E] .
On the Voyage 200, pressing 2s to display
e^ is different from accessing the character e
from the QWERTY keyboard.

You can enter a complex number in rei q polar
form. However, use this form in Radian angle
mode only; it causes a Domain error in Degree
angle mode.

e^(1) ¸

e^(1.)

e^(3)^2

e^(list1) ⇒ list

Returns e raised to the power of each element in
list1.

e^({1,1

e^(squareMatrix1) ⇒ squareMatrix

Returns the matrix exponential of squareMatrix1.
This is not the same as calculating e raised to the
power of each element. For information about the
calculation method, refer to cos().

squareMatrix1 must be diagonalizable. The result
always contains floating-point numbers.

e^([1,5

eigVc() MATH/Matrix menu

eigVc(squareMatrix) ⇒ matrix

Returns a matrix containing the eigenvectors for a
real or complex squareMatrix, where each column
in the result corresponds to an eigenvalue. Note
that an eigenvector is not unique; it may be
scaled by any constant factor. The eigenvectors
are normalized, meaning that if V = [x1, x2, … ,
xn], then:

x1 2 + x2 2 + … + xn 2 = 1

squareMatrix is first balanced with similarity
transformations until the row and column norms
are as close to the same value as possible. The
squareMatrix is then reduced to upper Hessenberg
form and the eigenvectors are computed via a
Schur factorization.

In Rectan

[L1,2,5

eigVc(m


ë.800… .484…
.352…
Appendix A: Functions and Instructions 181

ctangular complex format mode:

2,5;3,L6,9;2,L5,7]!m1 ¸







ë1 2 5

3 ë6 9
2 ë5 7

l(m1) ¸
{ë4.409… 2.204…+.763…øi

2.204…ì.763…øi}

am segment:

choice=1 Then
oto option1
lseIf choice=2 Then
oto option2
lseIf choice=3 Then
oto option3
lseIf choice=4 Then
isp "Exiting Program"
eturn
If
eigVl() MATH/Matrix menu

eigVl(squareMatrix) ⇒ list

Returns a list of the eigenvalues of a real or
complex squareMatrix.

squareMatrix is first balanced with similarity
transformations until the row and column norms
are as close to the same value as possible. The
squareMatrix is then reduced to upper Hessenberg
form and the eigenvalues are computed from the
upper Hessenberg matrix.

In Re

[L1,

eigV

Else See If, page 196.

ElseIf CATALOG See also If, page 196.

If Boolean expression1 Then
 block1
ElseIf Boolean expression2 Then
 block2

©
ElseIf Boolean expressionN Then
 blockN
EndIf

©

ElseIf can be used as a program instruction for
program branching.

Progr

©
:If
: G
: E
: G
: E
: G
: E
: D
: R
:End

©

EndCustm See Custom, page 169.

EndDlog See Dialog, page 177.

EndFor See For, page 189.

EndFunc See Func, page 190.

EndIf See If, page 196.

EndLoop See Loop, page 205.

EndPrgm See Prgm, page 220.

EndTBar See ToolBar, page 255.

EndTry See Try, page 256.

EndWhile See While, page 258.
182 Appendix A: Functions and Instructions

me screen:

1
x + 1

ry(1) ¸ 2ì
1

x+1

1
2ø(2øx+1) + 3/2

5/3ì
1

3ø(3øx+2)

) ¸
1
x + 1

25) ¸ 1/4

333333) ¸
333333
1000000

33333,.001) 1/3

.5x+y) ¸ 7øx
2 + y

.2,.33,4.125}) ¸

{1à5
33
100 33à8}
entry() CATALOG

entry() ⇒ expression
entry(integer) ⇒ expression

Returns a previous entry-line entry from the
Home screen history area.

integer, if included, specifies which entry
expression in the history area. The default is 1,
the most recently evaluated entry. Valid range is
from 1 to 99 and cannot be an expression.

Note: If the last entry is still highlighted on the
Home screen, pressing ¸ is equivalent to
executing entry(1).

On the Ho

1+1/x ¸

1+1/ent

¸

¸

entry(4

exact() MATH/Number menu

exact(expression1 [, tol]) ⇒ expression
exact(list1 [, tol]) ⇒ list
exact(matrix1 [, tol]) ⇒ matrix

Uses Exact mode arithmetic regardless of the
Exact/Approx mode setting to return, when
possible, the rational-number equivalent of the
argument.

tol specifies the tolerance for the conversion; the
default is 0 (zero).

exact(.

exact(.

exact(.

exact(3

exact({

Exec CATALOG

Exec string [, expression1] [, expression2] ...

Executes a string consisting of a series of Motorola
68000 op-codes. These codes act as a form of an
assembly-language program. If needed, the
optional expressions let you pass one or more
arguments to the program.

For more information, check the TI Web site:
http://www.ti.com/calc

Warning: Exec gives you access to the full
power of the microprocessor. Please be aware
that you can easily make a mistake that locks up
the calculator and causes you to lose your data.
We suggest you make a backup of the calculator
contents before attempting to use the Exec
command.
Appendix A: Functions and Instructions 183

am listing:

emp
 i,1,100,1
emp+i!temp
f temp>20
xit
For
p temp

nts of temp after execution: 21

e(x^2ìxì2=0,x) ¸ x=2 or

list(solve(x^2ìxì2=0,x),x)

{ë1 2}

nd((x+y+1)^2) ¸
xñ+ 2øxøy + 2øx + yñ+ 2øy + 1

nd((x^2ìx+y^2ìy)/(x^2ùy^2
^2ùyìxùy^2+xùy)) ¸

nd((x+y+1)^2,y) ¸
yñ+ 2øyø(x + 1) + (x + 1)ñ

nd((x+y+1)^2,x) ¸
xñ+ 2øxø(y + 1) + (y + 1)ñ

nd((x^2ìx+y^2ìy)/(x^2ùy^2
^2ùyìxùy^2+xùy),y) ¸

nd(ans(1),x) ¸
Exit CATALOG

Exit

Exits the current For, While, or Loop block.

Exit is not allowed outside the three looping
structures (For, While, or Loop).

Progr

:0!t
:For
: t
: I
: E
:End
:Dis

Conte

exp4list() CATALOG

exp4list(expression,var) ⇒ list

Examines expression for equations that are
separated by the word “or,” and returns a list
containing the right-hand sides of the equations
of the form var=expression. This gives you an easy
way to extract some solution values embedded in
the results of the solve(), cSolve(), fMin(), and
fMax() functions.

Note: exp4list() is not necessary with the zeros
and cZeros() functions because they return a list
of solution values directly.

solv
x=ë1

exp4
¸

expand() MATH/Algebra menu

expand(expression1 [, var]) ⇒ expression
expand(list1 [,var]) ⇒ list
expand(matrix1 [,var]) ⇒ matrix

expand(expression1) returns expression1
expanded with respect to all its variables. The
expansion is polynomial expansion for
polynomials and partial fraction expansion for
rational expressions.

The goal of expand() is to transform expression1
into a sum and/or difference of simple terms. In
contrast, the goal of factor() is to transform
expression1 into a product and/or quotient of
simple factors.

expa

expa
ìx

expand(expression1,var) returns expression
expanded with respect to var. Similar powers of
var are collected. The terms and their factors are
sorted with var as the main variable. There might
be some incidental factoring or expansion of the
collected coefficients. Compared to omitting var,
this often saves time, memory, and screen space,
while making the expression more
comprehensible.

expa

expa

expa
ìx

expa
184 Appendix A: Functions and Instructions

(x^3+x^2ì2)/(x^2ì2))

2øx
xñì2 + x+1

ans(1),x) ¸
1

xì‡2 +
1

x+‡2 + x+1

y)+‡(2xùy) ¸
ln(2øxøy) + ‡(2øxøy)

ans(1)) ¸
n(xøy) + ‡2ø‡(xøy) + ln(2)

ans(1))|y>=0 ¸
 + ‡2ø‡xø‡y + ln(y) + ln(2)

ùy)+abs(xùy)+ e^(2x+y)

e2ø x+y + sign(xøy) + |xøy|

ans(1)) ¸
øsign(y) + |x|ø|y|+ (ex)2øey

+2+x^2+x") ¸ xñ+ x + 3

xpand((1+x)^2)") ¸
xñ+ 2øx + 1

 cube(x)=x^3"!funcstr

"Define cube(x)=x^3"

ncstr) ¸ Done

 ¸ 8
Even when there is only one variable, using var
might make the denominator factorization used
for partial fraction expansion more complete.

Hint: For rational expressions, propFrac() is a
faster but less extreme alternative to expand().

Note: See also comDenom() for an expanded
numerator over an expanded denominator.

expand(
¸

expand(

expand(expression1,[var]) also distributes
logarithms and fractional powers regardless of
var. For increased distribution of logarithms and
fractional powers, inequality constraints might be
necessary to guarantee that some factors are
nonnegative.

expand(expression1, [var]) also distributes
absolute values, sign(), and exponentials,
regardless of var.

Note: See also tExpand() for trigonometric
angle-sum and multiple-angle expansion.

ln(2xù

expand(
l

expand(
ln(x)

sign(x
¸

expand(
sign(x)

expr() MATH/String menu

expr(string) ⇒ expression

Returns the character string contained in string as
an expression and immediately executes it.

expr("1

expr("e

"Define
¸

expr(fu

cube(2)
Appendix A: Functions and Instructions 185

ction graphing mode:

,3,4,5,6,7,8}!L1 ¸
{1 2 ...}

,2,2,3,4,5,7}!L2 ¸
{1 2 ...}

eg L1,L2 ¸ Done
Stat ¸

q(x)"y1(x) ¸ Done
lot 1,1,L1,L2 ¸ Done

or(a^3ùx^2ìaùx^2ìa^3+a)

(a ì1)ø(a + 1)ø(x ì1)ø(x + 1)

or(x^2+1) ¸ xñ+ 1

or(x^2ì4) ¸(x ì2)ø(x + 2)

or(x^2ì3) ¸ xñì3

or(x^2ìa) ¸ xñìa

or(a^3ùx^2ìaùx^2ìa^3+a,x)

aø(añì1)ø(x ì1)ø(x + 1)

or(x^2ì3,x) ¸
(x + ‡3)ø(x ì‡3)

or(x^2ìa,x) ¸
(x + ‡a)ø(x ì‡a)
ExpReg MATH/Statistics/Regressions menu

ExpReg list1, list2 [, [list3] [, list4, list5]]

Calculates the exponential regression and
updates all the system statistics variables.

All the lists must have equal dimensions except
for list5.

list1 represents xlist.
list2 represents ylist.
list3 represents frequency.
list4 represents category codes.
list5 represents category include list.

Note: list1 through list4 must be a variable name
or c1–c99 (columns in the last data variable
shown in the Data/Matrix Editor). list5 does not
have to be a variable name and cannot be c1–c99
.

In fun

{1,2

{1,2

ExpR
Show

¸
Rege
NewP

¥%

factor() MATH/Algebra menu

factor(expression1[, var]) ⇒ expression
factor(list1[,var]) ⇒ list
factor(matrix1[,var]) ⇒ matrix

factor(expression1) returns expression1 factored
with respect to all of its variables over a common
denominator.

expression1 is factored as much as possible toward
linear rational factors without introducing new
non-real subexpressions. This alternative is
appropriate if you want factorization with respect
to more than one variable.

fact
¸

aø

fact

fact

fact

fact

factor(expression1,var) returns expression1
factored with respect to variable var.

expression1 is factored as much as possible toward
real factors that are linear in var, even if it
introduces irrational constants or subexpressions
that are irrational in other variables.

The factors and their terms are sorted with var as
the main variable. Similar powers of var are
collected in each factor. Include var if
factorization is needed with respect to only that
variable and you are willing to accept irrational
expressions in any other variables to increase
factorization with respect to var. There might be
some incidental factoring with respect to other
variables.

fact
¸

fact

fact
186 Appendix A: Functions and Instructions

x^5+4x^4+5x^3ì6xì3)

x5 + 4øx4 + 5øx3ì6øx ì3

ans(1),x) ¸
(xì.964…)ø(x +.611…)ø

(x + 2.125…)ø(xñ+ 2.227…ø
x + 2.392…)

152417172689) ¸
123457ø1234577

(152417172689) ¸false

4]!amatrx ¸ [
1 2
3 4]

01,amatrx ¸ Done

¸ [
1.01 1.01
1.01 1.01]

4,5}!alist ¸
{1 2 3 4 5}

01,alist ¸ Done

1.01 1.01 1.01 1.01 1.01}

2.14) ¸ ë3.

3/2,0,ë5.3}) ¸

{1 0 ë6.}

1.2,3.4;2.5,4.8]) ¸

[
1. 3.
2. 4.]
For the AUTO setting of the Exact/Approx mode,
including var permits approximation with floating-
point coefficients where irrational coefficients
cannot be explicitly expressed concisely in terms
of the built-in functions. Even when there is only
one variable, including var might yield more
complete factorization.

Note: See also comDenom() for a fast way to
achieve partial factoring when factor() is not
fast enough or if it exhausts memory.

Note: See also cFactor() for factoring all the
way to complex coefficients in pursuit of linear
factors.

factor(
¸

factor(

factor(rationalNumber) returns the rational
number factored into primes. For composite
numbers, the computing time grows
exponentially with the number of digits in the
second-largest factor. For example, factoring a
30-digit integer could take more than a day, and
factoring a 100-digit number could take more
than a century.

Note: To stop (break) a computation, press ´.

If you merely want to determine if a number is
prime, use isPrime() instead. It is much faster,
particularly if rationalNumber is not prime and if
the second-largest factor has more than five
digits.

factor(

isPrime

Fill MATH/Matrix menu

Fill expression, matrixVar ⇒ matrix

Replaces each element in variable matrixVar with
expression.

matrixVar must already exist.

[1,2;3,

Fill 1.

amatrx

Fill expression, listVar ⇒ list

Replaces each element in variable listVar with
expression.

listVar must already exist.

{1,2,3,

Fill 1.
alist ¸

{

floor() MATH/Number menu

floor(expression) ⇒ integer

Returns the greatest integer that is the
argument. This function is identical to int().

The argument can be a real or a complex number.

floor(ë

floor(list1) ⇒ list
floor(matrix1) ⇒ matrix

Returns a list or matrix of the floor of each
element.

Note: See also ceiling() and int().

floor({

floor([
Appendix A: Functions and Instructions 187

(1ì(xìa)^2ì(xìb)^2,x)

x =
a+b
2

(.5x^3ìxì2,x) ¸ x = ̂

(.5x^3ìxì2,x)|x 1 ¸

x = ë.816...

(aùx^2,x) ¸
 ˆ or x = ëˆ or x = 0 or a = 0

(aùx^2,x)|a<0 ¸ x = 0

(1ì(xìa)^2ì(xìb)^2,x)

x = ˆ or x = ëˆ

(.5x^3ìxì2,x)|x‚1 ¸ x = 1

(aùx^2,x) ¸
 ˆ or x = ëˆ or x = 0 or a = 0

(aùx^2,x)|a>0 and x>1 ¸
x = 1.

(aùx^2,x)|a>0 ¸ x = 0

ction graphing mode:
Off 1,3 ¸ deselects y1(x) and
(x).

rametric graphing mode:
Off 1,3 ¸ deselects xt1(t), yt1(t),
3(t), and yt3(t).
fMax() MATH/Calculus menu

fMax(expression, var) ⇒ Boolean expression

Returns a Boolean expression specifying
candidate values of var that maximize expression
or locate its least upper bound.

fMax
¸

fMax

Use the “|” operator to restrict the solution
interval and/or specify the sign of other undefined
variables.

For the APPROX setting of the Exact/Approx
mode, fMax() iteratively searches for one
approximate local maximum. This is often faster,
particularly if you use the “|” operator to
constrain the search to a relatively small interval
that contains exactly one local maximum.

Note: See also fMin() and max().

fMax

fMax
x =

fMax

fMin() MATH/Calculus menu

fMin(expression, var) ⇒ Boolean expression

Returns a Boolean expression specifying
candidate values of var that minimize expression or
locate its greatest lower bound.

Use the “|” operator to restrict the solution
interval and/or specify the sign of other undefined
variables.

For the APPROX setting of the Exact/Approx
mode, fMin() iteratively searches for one
approximate local minimum. This is often faster,
particularly if you use the “|” operator to
constrain the search to a relatively small interval
that contains exactly one local minimum.

Note: See also fMax() and min().

fMin
¸

fMin

fMin
x =

fMin

fMin

FnOff CATALOG

FnOff

Deselects all Y= functions for the current
graphing mode.

In split-screen, two-graph mode, FnOff only
applies to the active graph.

FnOff [1] [, 2] ... [,99]

Deselects the specified Y= functions for the
current graphing mode.

In fun
Fn
y3

In pa
Fn
xt

FnOn CATALOG

FnOn

Selects all Y= functions that are defined for the
current graphing mode.

In split-screen, two-graph mode, FnOn only
applies to the active graph.
188 Appendix A: Functions and Instructions

segment:

psum : 1!step
1,100,step
sum+i!tempsum

empsum

of tempsum after
: 5050

of tempsum when step
d to 2: 2500

1.234567,"f3") ¸
"1.235"

1.234567,"s2") ¸
"1.23í0"

1.234567,"e3") ¸
"1.235í0"

1.234567,"g3") ¸
"1.235"

1234.567,"g3") ¸
"1,234.567"

1.234567,"g3,r:") ¸
"1:235"
FnOn [1] [, 2] ... [,99]

Selects the specified Y= functions for the current
graphing mode.

Note: In 3D graphing mode, only one function at
a time can be selected. FnOn 2 selects z2(x,y) and
deselects any previously selected function. In the
other graph modes, previously selected functions
are not affected.

For CATALOG

For var, low, high [, step]
block

EndFor

Executes the statements in block iteratively for
each value of var, from low to high, in increments
of step.

var must not be a system variable.

step can be positive or negative. The default value
is 1.

block can be either a single statement or a series
of statements separated with the “:” character.

Program

©
:0!tem
:For i,
: temp
:EndFor
:Disp t
 ©

Contents
execution

Contents
is change

format() MATH/String menu

format(expression[, formatString]) ⇒ string

Returns expression as a character string based on
the format template.

expression must simplify to a number. formatString
is a string and must be in the form: “F[n]”,
“S[n]”, “E[n]”, “G[n][c]”, where [] indicate
optional portions.

F[n]: Fixed format. n is the number of digits to
display after the decimal point.

S[n]: Scientific format. n is the number of digits to
display after the decimal point.

E[n]: Engineering format. n is the number of
digits after the first significant digit. The exponent
is adjusted to a multiple of three, and the decimal
point is moved to the right by zero, one, or two
digits.

format(

format(

format(

format(

format(

format(

G[n][c]: Same as fixed format but also separates
digits to the left of the radix into groups of three.
c specifies the group separator character and
defaults to a comma. If c is a period, the radix
will be shown as a comma.

[Rc]: Any of the above specifiers may be suffixed
with the Rc radix flag, where c is a single
character that specifies what to substitute for the
radix point.
Appendix A: Functions and Instructions 189

t(ë1.234) ¸ ë.234

t({1, ë2.3, 7.003}) ¸
{0 ë.3 .003}

ction graphing mode, define a piecewise
ion:

ne g(x)=Func:If x<0 Then
eturn 3ùcos(x):Else:Return
x:EndIf:EndFunc ¸ Done

h g(x) ¸

18,33) ¸ 3

{12,14,16},{9,7,5}) ¸
{3 7 1}

[2,4;6,8],[4,8;12,16])

[
2 4
6 8]

am segment:

d {3,1,ë1,0}
 i,1,99
et data[i]
tOn i,data[i]
For
fPart() MATH/Number menu

fPart(expression1) ⇒ expression
fPart(list1) ⇒ list
fPart(matrix1) ⇒ matrix

Returns the fractional part of the argument.

For a list or matrix, returns the fractional parts of
the elements.

The argument can be a real or a complex number.

fPar

fPar

Func CATALOG

Func
 block
EndFunc

Required as the first statement in a multi-
statement function definition.

block can be either a single statement or a series
of statements separated with the “:” character.

Note: when() also can be used to define and
graph piecewise-defined functions.

In fun
funct

Defi
:R
3ì

Grap

gcd() MATH/Number menu

gcd(number1, number2) ⇒ expression

Returns the greatest common divisor of the two
arguments. The gcd of two fractions is the gcd
of their numerators divided by the lcm of their
denominators.

In Auto or Approximate mode, the gcd of
fractional floating-point numbers is 1.0.

gcd(

gcd(list1, list2) ⇒ list

Returns the greatest common divisors of the
corresponding elements in list1 and list2.

gcd(

gcd(matrix1, matrix2) ⇒ matrix

Returns the greatest common divisors of the
corresponding elements in matrix1 and matrix2.

gcd(
¸

Get CATALOG

Get var

Retrieves a CBL 2é/CBL™ (Calculator-Based
Laboratoryé) or CBRé (Calculator-Based
Rangeré) value from the link port and stores it in
variable var.

Progr

©
:Sen
:For
: G
: P
:End

©

190 Appendix A: Functions and Instructions

segment:

Press Enter when ready"

c L1
List L1 received"

g() ¸
{"Product Name" "Advanced

Mathematics Software"
rsion" "2.00, 09/25/1999"
 "Product ID" "03-1-4-68"
"ID #" "01012 34567 ABCD"

 "Cert. Rev. #" 0
"Screen Width" 160

"Screen Height" 100
"Window Width" 160
"Window Height" 67
"RAM Size" 262132
"Free RAM" 197178

"Archive Size" 655360
"Free Archive" 655340}

g() ¸
{"Product Name" "Advanced

Mathematics Software"
rsion" "2.00, 09/25/1999"
 "Product ID" "01-1-4-80"
"ID #" "01012 34567 ABCD"

 "Cert. Rev. #" 0
"Screen Width" 240

"Screen Height" 120
"Window Width" 240
"Window Height" 91
"RAM Size" 262144
"Free RAM" 192988

"Archive Size" 720896
"Free Archive" 720874}

ur screen may display different attribute
e Cert. Rev. # attribute appears only if
purchased and installed additional
nto the calculator.
GetCalc CATALOG

GetCalc var

Retrieves a value from the link port and stores it
in variable var. This is for unit-to-unit linking.

Note: To get a variable to the link port from
another unit, use 2° on the other unit
to select and send a variable, or do a SendCalc
on the other unit.

Program

©
:Disp "
:Pause
:GetCal
:Disp "

©

@ GetCalc var[,port]

Retrieves a value from the link port and stores it
in variable var on the receiving TI-89 Titanium.

If the port is not specified, or port = 0 is specified,
the TI-89 Titanium waits for data from either
port.

If port = 1, the TI-89 Titanium waits for data from
the USB port.

If port = 2, the TI-89 Titanium waits for data from
the I/O port.

getConfg() CATALOG

getConfg() ⇒ ListPairs

Returns a list of calculator attributes. The
attribute name is listed first, followed by its
value.

@ :

getConf

"Ve

H
getConf

"Ve

Note: Yo
values. Th
you have
software i

Appendix A: Functions and Instructions 191

ate() ¸ {2002 2 22}

enom((x+2)/(yì3)) ¸ y ì3

enom(2/7) ¸ 7

enom(1/x+(y^2+y)/y^2) ¸
xøy

er values:

MM/DD/YY

DD/MM/YY

MM.DD.YY

DD.MM.YY

YY.MM.DD

MM-DD-YY

DD-MM-YY

YY-MM-DD

nal integer values:

MM/DD/YY

DD/MM/YY

MM.DD.YY

DD.MM.YY

YY.MM.DD

MM-DD-YY

DD-MM-YY

YY-MM-DD

old() ¸ "main"

old()!oldfoldr ¸ "main"

oldr ¸ "main"
 getDate() CATALOG

getDate() ⇒ list

Returns a list giving the date according to the
current value of the clock. The list is in
{year,month,day} format.

getD

getDenom() MATH/Algebra/Extract menu

getDenom(expression1) ⇒ expression

Transforms expression1 into one having a reduced
common denominator, and then returns its
denominator.

getD

getD

getD

 getDtFmt() CATALOG

getDtFmt() ⇒ integer

Returns an integer representing the date format
that is currently set on the device.

Integ

1 =

2 =

3 =

4 =

5 =

6 =

7 =

8 =

 getDtStr() CATALOG

getDtStr([integer]) ⇒ string

Returns a string of the current date in the current
date format. For example, a returned string of
28/09/02 represents the 28th day of September,
2002 (when the date format is set to
DD/MM/YY).

If you enter the optional integer that corresponds
to a date format, the string returns the current
date in the specified format.

Optio

1 =

2 =

3 =

4 =

5 =

6 =

7 =

8 =

getFold() CATALOG

getFold() ⇒ nameString

Returns the name of the current folder as a string.

getF

getF

oldf
192 Appendix A: Functions and Instructions

listing:

ey()!key
e key=0
tKey()!key
hile
 key
ey = ord("a")

p

("angle") ¸ "RADIAN"

("graph") ¸"FUNCTION"

("all") ¸
{"Graph" "FUNCTION"

"Display Digits" "FLOAT 6"
 "Angle" "RADIAN"

ponential Format" "NORMAL"
 "Complex Format" "REAL"

ctor Format" "RECTANGULAR"
 "Pretty Print" "ON"

 "Split Screen" "FULL"
 "Split 1 App" "Home"
 "Split 2 App" "Graph"
 "Number of Graphs" "1"
 "Graph 2" "FUNCTION"

Split Screen Ratio" "1,1"
 "Exact/Approx" "AUTO"

 "Base" "DEC"}

ur screen may display different
tings.

(x+2)/(yì3)) ¸ x + 2

2/7) ¸ 2

1/x+1/y) ¸ x + y

lues:

 hour clock

 hour clock
getKey() CATALOG

getKey() ⇒ integer

Returns the key code of the key pressed. Returns
0 if no key is pressed.

The prefix keys (shift ¤, second function 2,
option ¥, alpha j, and drag ‚) are not
recognized by themselves; however, they modify
the keycodes of the key that follows them. For
example: ¥Ù ƒ Ù ƒ 2Ù.

For a listing of key codes, see Appendix B.

Program

:Disp
:Loop
: getK
: whil
: ge
: EndW
: Disp
: If k
: Stop
:EndLoo

getMode() CATALOG

getMode(modeNameString) ⇒ string
getMode("ALL") ⇒ ListStringPairs

If the argument is a specific mode name, returns
a string containing the current setting for that
mode.

If the argument is "ALL", returns a list of string
pairs containing the settings of all the modes. If
you want to restore the mode settings later, you
must store the getMode("ALL") result in a
variable, and then use setMode() to restore the
modes.

For a listing of mode names and possible settings,
see setMode().

Note: To set or return information about the
Unit System mode, use setUnits() or getUnits()
instead of setMode() or getMode().

getMode

getMode

getMode

 "Ex

 "Ve

"

Note: Yo
mode set

getNum() MATH/Algebra/Extract menu

getNum(expression1) ⇒ expression

Transforms expression1 into one having a reduced
common denominator, and then returns its
numerator.

getNum(

getNum(

getNum(

 getTime() CATALOG

getTime() ⇒ list

Returns a list giving the time according to the
current value of the clock. The list is in
{hour,minute,second} format. The time is returned
in the 24 hour format.

 getTmFmt() CATALOG

getTmFmt() ⇒ integer

Returns an integer representing the clock time
format that is currently set on the device.

Integer va

12 = 12

24 = 24

Appendix A: Functions and Instructions 193

nal integer values:

 12 hour clock

 24 hour clock

enwich Mean Time is 14:07:07, it is:

07 a.m. in Denver, Colorado (Mountain
ght Time)
 minutes from GMT)

:07 p.m. in Brussels, Belgium (Central
ean Standard Time)
 minutes from GMT)

,3}!temp ¸ {1 2 3}
ype(temp) ¸ "LIST"

!temp ¸ 2 + 3i
ype(temp) ¸ "EXPR"

ar temp ¸ Done
ype(temp) ¸ "NONE"

ary/undefined, ̂ , ëˆ, TRUE, FALSE, pi,

 by software applications
 getTmStr() CATALOG

getTmStr([integer]) ⇒ string

Returns a string of the current clock time in the
current time format.

If you enter the optional integer that corresponds
to a clock time format, the string returns the
current time in the specified format.

Optio

12 =

24 =

 getTmZn() CATALOG

getTmZn() ⇒ integer

Returns an integer representing the time zone
that is currently set on the device.

The returned integer represents the number of
minutes the time zone is offset from Greenwich
Mean Time (GMT), as established in Greenwich,
England. For example, if the time zone is offset
from GMT by two hours, the device would return
120 (minutes).

Integers for time zones west of GMT are
negative.

Integers for time zones east of GMT are positive.

If Gre

8:07:
Dayli
(–360

16:07
Europ
(+120

getType() CATALOG

getType(var) ⇒ string

Returns a string indicating the data type of
variable var.

If var has not been defined, returns the string
"NONE".

{1,2
getT

2+3i
getT

DelV
getT

Data Type Variable Contents

"ASM" Assembly-language program
"DATA" Data type
"EXPR" Expression (includes complex/arbitr

e)
"FUNC" Function
"GDB" Graph data base
"LIST" List
"MAT" Matrix
"NONE" Variable does not exist
"NUM" Real number
"OTHER" Miscellaneous data type for future use
"PIC" Picture
"PRGM" Program
"STR" String
"TEXT" Text type
"VAR" Name of another variable
194 Appendix A: Functions and Instructions

s() ¸
{"SI" "Area" "NONE"

"Capacitance" "_F"
"Charge" "_coul"

… }

ur screen may display different
its.

segment:

p

P
+i!temp
<10 Then
!i
o TOP
f
emp

n graphing mode and ZoomStd

.25aùcos(a),a ¸

tric graphing mode and ZoomStd

os(time)/time,time ¸
getUnits() CATALOG

getUnits() ⇒ list

Returns a list of strings that contain the current
default units for all categories except constants,
temperature, amount of substance, luminous
intensity, and acceleration. list has the form:

{"system" "cat1" "unit1" "cat2" "unit2" …}

The first string gives the system (SI, ENG/US, or
CUSTOM). Subsequent pairs of strings give a
category (such as Length) and its default unit
(such as _m for meters).

To set the default units, use setUnits().

getUnit

Note: Yo
default un

Goto CATALOG

Goto labelName

Transfers program control to the label labelName.

labelName must be defined in the same program
using a Lbl instruction.

Program

©
:0!tem
:1!i
:Lbl TO
: temp
: If i
: i+1
: Got
: EndI
:Disp t

©

Graph CATALOG

Graph expression1[, expression2] [, var1] [, var2]

The Smart Graph feature graphs the requested
expressions/ functions using the current graphing
mode.

Expressions entered using the Graph or Table
commands are assigned increasing function
numbers starting with 1. They can be modified or
individually deleted using the edit functions
available when the table is displayed by pressing
†Header. The currently selected Y= functions
are ignored.

If you omit an optional var argument, Graph uses
the independent variable of the current graphing
mode.

Note: Not all optional arguments are valid in all
modes because you can never have all four
arguments at the same time.

In functio
window:

Graph 1

In parame
window:

Graph
time,2c
Appendix A: Functions and Instructions 195

 graphing mode:

h (v^2 ìw^2)/4,v,w ¸

4Hex ¸ 0h100

1100001111 4Hex ¸ 0hF0F

tity(4) ¸









1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

am segment:

x<0
p "x is negative"

x<0 Then
isp "x is negative"
bs(x)!x
If
Some valid variations of this instruction are:

Function graphing Graph expr, x

Parametric graphing Graph xExpr, yExpr, t

Polar graphing Graph expr, q

Sequence graphing Not allowed.

3D graphing Graph expr, x, y

Diff Equations graphing Not allowed.

Note: Use ClrGraph to clear these functions, or
go to the Y= Editor to re-enable the system Y=
functions.

In 3D

Grap

4Hex MATH/Base menu

integer1 4Hex ⇒ integer

Converts integer1 to a hexadecimal number.
Binary or hexadecimal numbers always have a 0b
or 0h prefix, respectively.

256

0b11

0b binaryNumber
0h hexadecimalNumber

Without a prefix, integer1 is treated as decimal
(base 10). The result is displayed in hexadecimal,
regardless of the Base mode.

If you enter a decimal integer that is too large for
a signed, 32-bit binary form, a symmetric modulo
operation is used to bring the value into the
appropriate range.

identity() MATH/Matrix menu

identity(expression) ⇒ matrix

Returns the identity matrix with a dimension of
expression.

expression must evaluate to a positive integer.

iden

If CATALOG

If Boolean expression If Boolean expression Then
statement block

EndIf

If Boolean expression evaluates to true, executes
the single statement statement or the block of
statements block before continuing execution.

If Boolean expression evaluates to false, continues
execution without executing the statement or
block of statements.

block can be either a single statement or a
sequence of statements separated with the “:”
character.

Progr

©
:If
:Dis

©
 —or—

©
:If
: D
: a
:End
 ©

A binary number can have up to
32 digits. A hexadecimal number
can have up to 8.

Zero, not the letter O, followed by b or h.
196 Appendix A: Functions and Instructions

segment:

 Then
 "x is negative"
se
 "x is positive or

segment:

oice=1 Then
o option1
eIf choice=2 Then
oto option2
eIf choice=3 Then
oto option3
eIf choice=4 Then
isp "Exiting Program"
eturn

2i) ¸ 2

 ¸ 0

iy) ¸ y

3,4ë i,i}) ¸ {0 ë1 1}

,b;ic,id]) ¸ [
0 0
c d]

segment:

10 points from the Graph
en
1,10
t
XLIST[i]
YLIST[i]
If Boolean expression Then
block1

 Else
block2

 EndIf

If Boolean expression evaluates to true, executes
block1 and then skips block2.

If Boolean expression evaluates to false, skips
block1 but executes block2.

block1 and block2 can be a single statement.

Program

©
:If x<0
: Disp
: El
: Disp
zero"
:EndIf

©

If Boolean expression1 Then
 block1
ElseIf Boolean expression2 Then
 block2

©
ElseIf Boolean expressionN Then
 blockN
EndIf

Allows for program branching. If Boolean
expression1 evaluates to true, executes block1. If
Boolean expression1 evaluates to false, evaluates
Boolean expression2, etc.

Program

©
:If ch
: Got
: Els
: G
: Els
: G
: Els
: D
: R
:EndIf

©

imag() MATH/Complex menu

imag(expression1) ⇒ expression

imag(expression1) returns the imaginary part of
the argument.

Note: All undefined variables are treated as real
variables. See also real().

imag(1+

imag(z)

imag(x+

imag(list1) ⇒ list

Returns a list of the imaginary parts of the
elements.

imag({ë

imag(matrix1) ⇒ matrix

Returns a matrix of the imaginary parts of the
elements.

imag([a

Indirection See #(), page 273.

Input CATALOG

Input

Pauses the program, displays the current Graph
screen, and lets you update variables xc and yc
(also rc and qc for polar coordinate mode) by
positioning the graph cursor.

When you press ¸, the program resumes.

Program

©
:¦ Get

Scre
:For i,
: Inpu
: xc!
: yc!
:EndFor

©

Appendix A: Functions and Instructions 197

am segment:

 i,1,9,1
Enter x" & string(i)!str1
nput str1,#(right(str1,2))
For

am segment:

utStr "Enter Your Name",str1

ring("Hello there","the")
7

EFG"!s1:If inString(s1,
=0:Disp "D not found."

D not found.

ë2.5) ¸ ë3.

[-1.234,0,0.37]) ¸
[-2. 0 0.]

iv(ë7,2) ¸ ë3

iv(4,5) ¸ 0

iv({12,ë14,ë16},{5,4,ë3})

{2 ë3 5}
Input [promptString,] var

Input [promptString], var pauses the program,
displays promptString on the Program I/O screen,
waits for you to enter an expression, and stores
the expression in variable var.

If you omit promptString, “?” is displayed as a
prompt.

Progr

©
:For
: "
: I
:End

©

InputStr CATALOG

InputStr [promptString,] var

Pauses the program, displays promptString on the
Program I/O screen, waits for you to enter a
response, and stores your response as a string in
variable var.

If you omit promptString, “?” is displayed as a
prompt.

Note: The difference between Input and
InputStr is that InputStr always stores the
result as a string so that “ ” are not required.

Progr

©
:Inp

©

inString() MATH/String menu

inString(srcString, subString[, start]) ⇒ integer

Returns the character position in string srcString at
which the first occurrence of string subString
begins.

start, if included, specifies the character position
within srcString where the search begins. Default
= 1 (the first character of srcString).

If srcString does not contain subString or start is >
the length of srcString, returns zero.

inSt
¸

"ABC
"D")
¸

int() CATALOG

int(expression) ⇒ integer
int(list1) ⇒ list
int(matrix1) ⇒ matrix

Returns the greatest integer that is less than or
equal to the argument. This function is identical
to floor().

The argument can be a real or a complex number.

For a list or matrix, returns the greatest integer of
each of the elements.

int(

int(

intDiv() CATALOG

intDiv(number1, number2) ⇒ integer
intDiv(list1, list2) ⇒ list
intDiv(matrix1, matrix2) ⇒ matrix

Returns the signed integer part of argument 1
divided by argument 2.

For lists and matrices returns the signed integer
part of argument 1 divided by argument 2 for
each element pair.

intD

intD

intD
¸

integrate See ‰(), page 272.
198 Appendix A: Functions and Instructions

1.234) ¸ ë1.

3/2,ë2.3,7.003}) ¸
{1 ë2. 7.}

(5) ¸ true
(6) ¸ false

to find the next prime after a
number:

nextPrim(n)=Func:Loop:
if isPrime(n):return n:
:EndFunc ¸ Done

m(7) ¸ 11

om example.

segment:

l1
tr "Enter password",

1ƒpassword
 lbl1
Welcome to ..."
iPart() MATH/Number menu

iPart(number) ⇒ integer
iPart(list1) ⇒ list
iPart(matrix1) ⇒ matrix

Returns the integer part of the argument.

For lists and matrices, returns the integer part of
each element.

The argument can be a real or a complex number.

iPart(ë

iPart({

 isClkOn() CATALOG

isClkOn() ⇒ true,false

Determines if the clock is ON or OFF. Returns
true if the clock is ON. Returns false if the clock
is OFF.

isPrime() MATH/Test menu

isPrime(number) ⇒ Boolean constant expression

Returns true or false to indicate if number is a
whole number ‚ 2 that is evenly divisible only by
itself and 1.

If number exceeds about 306 digits and has no
factors 1021, isPrime(number) displays an error
message.

If you merely want to determine if number is
prime, use isPrime() instead of factor(). It is
much faster, particularly if number is not prime
and has a second-largest factor that exceeds
about five digits.

IsPrime
IsPrime

Function
specified

Define
n+1!n:
EndLoop

nextPri

Item CATALOG

Item itemNameString
Item itemNameString, label

Valid only within a Custom...EndCustm or
ToolBar...EndTBar block. Sets up a drop-down
menu element to let you paste text to the cursor
position (Custom) or branch to a label
(ToolBar).

Note: Branching to a label is not allowed within
a Custom block.

See Cust

Lbl CATALOG

Lbl labelName

Defines a label with the name labelName in the
program.

You can use a Goto labelName instruction to
transfer program control to the instruction
immediately following the label.

labelName must meet the same naming
requirements as a variable name.

Program

©
:Lbl lb
:InputS
str1
:If str
: Goto
:Disp "

©

Appendix A: Functions and Instructions 199

6,9) ¸ 18

{1/3,ë14,16},{2/15,7,5})

{2/3 14 80}

("Hello",2) ¸ "He"

({1,3,ë2,4},3) ¸
{1 3 ë2}

(x<3) ¸ x

t(2x+3,x,5) ¸ 13

t(1/x,x,0,1) ¸ ˆ

t(sin(x)/x,x,0) ¸ 1

t((sin(x+h)-sin(x))/h,h,0)

cos(x)

t((1+1/n)^n,n,ˆ) ¸ e
lcm() MATH/Number menu

lcm(number1, number2) ⇒ expression
lcm(list1, list2) ⇒ list
lcm(matrix1, matrix2) ⇒ matrix

Returns the least common multiple of the two
arguments. The lcm of two fractions is the lcm
of their numerators divided by the gcd of their
denominators. The lcm of fractional floating-
point numbers is their product.

For two lists or matrices, returns the least
common multiples of the corresponding elements.

lcm(

lcm(
¸

left() MATH/String menu
left(sourceString[, num]) ⇒ string

Returns the leftmost num characters contained in
character string sourceString.

If you omit num, returns all of sourceString.

left

left(list1[, num]) ⇒ list

Returns the leftmost num elements contained in
list1.

If you omit num, returns all of list1.

left

left(comparison) ⇒ expression

Returns the left-hand side of an equation or
inequality.

left

limit() MATH/Calculus menu

limit(expression1, var, point[, direction]) ⇒
expression

limit(list1, var, point[, direction]) ⇒ list
limit(matrix1, var, point[, direction]) ⇒ matrix

Returns the limit requested.

direction: negative=from left, positive=from right,
otherwise=both. (If omitted, direction defaults to
both.)

limi

limi

limi

limi
¸

limi

Limits at positive ˆ and at negative ˆ are always
converted to one-sided limits from the finite side.

Depending on the circumstances, limit() returns
itself or undef when it cannot determine a unique
limit. This does not necessarily mean that a
unique limit does not exist. undef means that the
result is either an unknown number with finite or
infinite magnitude, or it is the entire set of such
numbers.
200 Appendix A: Functions and Instructions

^x,x,ˆ) ¸ undef

^x,x,ˆ)|a>1 ¸ ˆ

^x,x,ˆ)|a>0 and a<1
0

mStd window, draw a line and then

0,6,9 ¸

"

0,6,9,0 ¸

Std window:

z 2.5 ¸

n graphing mode and a ZoomTrig

os(x)

"

 cos(x),p/4 ¸
limit() uses methods such as L’Hopital’s rule, so
there are unique limits that it cannot determine. If
expression1 contains undefined variables other
than var, you might have to constrain them to
obtain a more concise result.

Limits can be very sensitive to rounding error.
When possible, avoid the APPROX setting of the
Exact/Approx mode and approximate numbers
when computing limits. Otherwise, limits that
should be zero or have infinite magnitude
probably will not, and limits that should have
finite non-zero magnitude might not.

limit(a

limit(a

limit(a
¸

Line CATALOG

Line xStart, yStart, xEnd, yEnd[, drawMode]

Displays the Graph screen and draws, erases, or
inverts a line segment between the window
coordinates (xStart, yStart) and (xEnd, yEnd),
including both endpoints.

If drawMode = 1, draws the line (default).
If drawMode = 0, turns off the line.
If drawMode = ë 1, turns a line that is on to off or
off to on (inverts pixels along the line).

Note: Regraphing erases all drawn items. See
also PxlLine.

In the Zoo
erase it.

Line 0,

@ "

H ¥

Line 0,

LineHorz CATALOG

LineHorz y [, drawMode]

Displays the Graph screen and draws, erases, or
inverts a horizontal line at window position y.

If drawMode = 1, draws the line (default).
If drawMode = 0, turns off the line.
If drawMode = ë 1, turns a line that is on to off or
off to on (inverts pixels along the line).

Note: Regraphing erases all drawn items. See
also PxlHorz.

In a Zoom

LineHor

LineTan CATALOG

LineTan expression1, expression2

Displays the Graph screen and draws a line
tangent to expression1 at the point specified.

expression1 is an expression or the name of a
function, where x is assumed to be the
independent variable, and expression2 is the x
value of the point that is tangent.

Note: In the example shown, expression1 is
graphed separately. LineTan does not graph
expression1.

In functio
window:

Graph c

@ "

H ¥

LineTan
Appendix A: Functions and Instructions 201

oomStd window:

Vert ë2.5 ¸

ction graphing mode:

,2,3,4,5,6}!L1 ¸
{0 1 2 ...}

,3,4,3,4,6}!L2 ¸
{0 2 3 ...}

eg L1,L2 ¸ Done
Stat ¸

q(x)"y1(x) ¸ Done
lot 1,1,L1,L2 ¸ Done

t({20,30,45,70}) ¸
{10,15,25}

4mat({1,2,3}) ¸ [1 2 3]

4mat({1,2,3,4,5},2) ¸







1 2

3 4
5 0
LineVert CATALOG

LineVert x [, drawMode]

Displays the Graph screen and draws, erases, or
inverts a vertical line at window position x.

If drawMode = 1, draws the line (default).
If drawMode = 0, turns off the line.
If drawMode = ë 1, turns a line that is on to off or
off to on (inverts pixels along the line).

Note: Regraphing erases all drawn items. See
also PxlVert.

In a Z

Line

LinReg MATH/Statistics/Regressions menu

LinReg list1, list2[, [list3] [, list4, list5]]

Calculates the linear regression and updates all
the system statistics variables.

All the lists must have equal dimensions except
for list5.

list1 represents xlist.
list2 represents ylist.
list3 represents frequency.
list4 represents category codes.
list5 represents category include list.

In fun

{0,1

{0,2

LinR
Show

Note: list1 through list4 must be a variable name
or c1–c99 (columns in the last data variable
shown in the Data/Matrix Editor). list5 does not
have to be a variable name and cannot be c1–
c99.

¸
Rege
NewP

¥%

@list() MATH/List menu

list(list1) ⇒ list

Returns a list containing the differences between
consecutive elements in list1. Each element of list1
is subtracted from the next element of list1. The
resulting list is always one element shorter than
the original list1.

@lis

list4mat() MATH/List menu

list4mat(list [, elementsPerRow]) ⇒ matrix

Returns a matrix filled row-by-row with the
elements from list.

elementsPerRow, if included, specifies the number
of elements per row. Default is the number of
elements in list (one row).

If list does not fill the resulting matrix, zeros are
added.

list

list
202 Appendix A: Functions and Instructions

 ¸ .693...

x format mode is REAL:

,1.2,5}) ¸
Error: Non-real result

 format mode is RECTANGULAR:

,1.2,5}) ¸
n(3) + pø i .182... ln(5)}

 angle mode and Rectangular
format mode:

5,3;4,2,1;6,ë2,1]) ¸



1.734…øi .009…ì 1.490…øi …

725…øi 1.064…+.623øi …
2.083…øi 1.124…+1.790…øi …

n graphing mode:

4,5,6,7,8}!L1 ¸
{1 2 3 ...}

3,3,3,4,4}!L2 ¸
{1 2 2 ...}

1,L2 ¸ Done
t ¸

)"y1(x) ¸ Done
 1,1,L1,L2 ¸ Done
ln() @ 2x key H x key

ln(expression1) ⇒ expression
ln(list1) ⇒ list

Returns the natural logarithm of the argument.

For a list, returns the natural logarithms of the
elements.

ln(2.0)

If comple

ln({ë3

If complex

ln({ë3
{l

ln(squareMatrix1) ⇒ squareMatrix

Returns the matrix natural logarithm of
squareMatrix1. This is not the same as calculating
the natural logarithm of each element. For
information about the calculation method, refer
to cos() on.

squareMatrix1 must be diagonalizable. The result
always contains floating-point numbers.

In Radian
complex

ln([1,



1.831…+
.448…ì.
ë.266…ì

LnReg MATH/Statistics/Regressions menu

LnReg list1, list2[, [list3] [, list4, list5]]

Calculates the logarithmic regression and updates
all the system statistics variables.

All the lists must have equal dimensions except
for list5.

list1 represents xlist.
list2 represents ylist.
list3 represents frequency.
list4 represents category codes.
list5 represents category include list.

Note: list1 through list4 must be a variable name
or c1–c99 (columns in the last data variable
shown in the Data/Matrix Editor). list5 does not
have to be a variable name and cannot be c1–
c99.

In functio

{1,2,3,

{1,2,2,

LnReg L
ShowSta

¸
Regeq(x
NewPlot

¥%
Appendix A: Functions and Instructions 203

am listing:

mname()
m
al x,y
ut "Enter x",x
ut "Enter y",y
p xùy
Prgm

: x and y do not exist after the program
tes.

,3,4}!L1 ¸ {1,2,3,4}

 L1 ¸ Done

ar L1 ¸
r: Variable is locked or protected

2.0) ¸ .301...

plex format mode is REAL:

{ë3,1.2,5}) ¸
Error: Non-real result

plex format mode is RECTANGULAR:

{ë3,1.2,5}) ¸
(3)
10) +

p

ln(10) øi .079...
ln(5)
ln(10)}

dian angle mode and Rectangular
lex format mode:

[1,5,3;4,2,1;6,ë2,1]) ¸



5…+.753…øi .003…ì.647…øi …

4…ì.315…øi .462…+.270øi …
15…ì.904…øi .488…+.777…øi …
Local CATALOG

Local var1[, var2] [, var3] ...

Declares the specified vars as local variables.
Those variables exist only during evaluation of a
program or function and are deleted when the
program or function finishes execution.

Note: Local variables save memory because they
only exist temporarily. Also, they do not disturb
any existing global variable values. Local
variables must be used for For loops and for
temporarily saving values in a multi-line function
since modifications on global variables are not
allowed in a function.

Progr

:prg
:Prg
:Loc
:Inp
:Inp
:Dis
:End

Note
execu

Lock CATALOG

Lock var1[, var2] ...

Locks the specified variables. This prevents you
from accidentally deleting or changing the
variable without first using the unlock instruction
on that variable.

In the example to the right, the variable L1 is
locked and cannot be deleted or modified.

Note: The variables can be unlocked using the
Unlock command.

{1,2

Lock

DelV
Erro

log() CATALOG

log(expression1) ⇒ expression
log(list1) ⇒ list

Returns the base-10 logarithm of the argument.

For a list, returns the base-10 logs of the
elements.

log(

If com

log(

If com

log(

{ ln
ln(

log(squareMatrix1) ⇒ squareMatrix

Returns the matrix base-10 logarithm of
squareMatrix1. This is not the same as calculating
the base-10 logarithm of each element. For
information about the calculation method, refer
to cos().

squareMatrix1 must be diagonalizable. The result
always contains floating-point numbers.

In Ra
comp

log(



.79
.19
ë.1
204 Appendix A: Functions and Instructions

n graphing mode:

,4,5,6}!L1 ¸ {1 2 3 …}
,2.5,3.5,4.5,4.8}!L2

{1 1.3 2.5 …}
ic L1,L2 ¸ Done
at ¸

x)!y1(x) ¸ Done
t 1,1,L1,L2 ¸ Done

segment:

(6)!die1
(6)!die2
ie1=6 and die2=6
to End
i
p
d
The number of rolls is", i
Logistic MATH/Statistics/Regressions menu

Logistic list1, list2 [, [iterations] , [list3] [, list4, list5]]

Calculates the logistic regression and updates all
the system statistics variables.

All the lists must have equal dimensions except
for list5.

list1 represents xlist.
list2 represents ylist.
list3 represents frequency.
list4 represents category codes.
list5 represents category include list.

iterations specifies the maximum number of times
a solution will be attempted. If omitted, 64 is
used. Typically, larger values result in better
accuracy but longer execution times, and vice
versa.

Note: list1 through list4 must be a variable name
or c1–c99 (columns in the last data variable
shown in the Data/Matrix Editor). list5 does not
have to be a variable name and cannot be c1–c99
.

In functio

{1,2,3
{1,1.3

¸

Logist
ShowSt

¸
regeq(
NewPlo
¥%
„9

Loop CATALOG

Loop
 block
EndLoop

Repeatedly executes the statements in block. Note
that the loop will be executed endlessly, unless a
Goto or Exit instruction is executed within block.

block is a sequence of statements separated with
the “:” character.

Program

©
:1!i
:Loop
: Rand
: Rand
: If d
: Go
: i+1!
:EndLoo
:Lbl En
:Disp "

©

Appendix A: Functions and Instructions 205

2,18;5,14,31;3,8,18]!m1







6 12 18

5 14 31
3 8 18

1,lower,upper,perm ̧ Done

r ¸






1 0 0

5/6 1 0
1/2 1/2 1

r ¸






6 12 18

0 4 16
0 0 1

 ¸






1 0 0

0 1 0
0 0 1

;o,p]!m1 ¸  
m n
o p

1,lower,upper,perm ̧ Done

r ¸






1 0

m
o 1

r ¸






o p

0 n ì
møp
o

 ¸  
0 1
1 0
LU MATH/Matrix menu

LU matrix, lMatName, uMatName, pMatName[, tol]

Calculates the Doolittle LU (lower-upper)
decomposition of a real or complex matrix. The
lower triangular matrix is stored in lMatName, the
upper triangular matrix in uMatName, and the
permutation matrix (which describes the row
swaps done during the calculation) in pMatName.

lMatName ù uMatName = pMatName ù matrix

Optionally, any matrix element is treated as zero
if its absolute value is less than tol. This tolerance
is used only if the matrix has floating-point
entries and does not contain any symbolic
variables that have not been assigned a value.
Otherwise, tol is ignored.

• If you use ¥¸ or set the mode to
Exact/Approx=APPROXIMATE, computations
are done using floating-point arithmetic.

• If tol is omitted or not used, the default
tolerance is calculated as:
5Eë 14 ùmax(dim(matrix))
ù rowNorm(matrix)

The LU factorization algorithm uses partial
pivoting with row interchanges.

[6,1
¸

LU m

lowe

uppe

perm

[m,n

LU m

lowe

uppe

perm
206 Appendix A: Functions and Instructions

t([1,2,3]) ¸ {1 2 3}

4,5,6]!M1 ¸

[
1 2 3
4 5 6]

t(M1) ¸ {1 2 3 4 5 6}

,1.4) ¸ 2.3

2},{ë4,3}) ¸ {1 3}

1,ë7,1.3,.5}) ¸ 1.3

,ë3,7;ë4,0,.3]) ¸
[1 0 7]

2,0,1,ë.3,.4}) ¸ .26

,2,3},{3,2,1}) ¸ 5/3

format rectangular mode:

2,0;L1,3;.4,L.5]) ¸
[L.133... .833...]

/5,0;L1,3;2/5,L1/2])

[ë2/15 5/6]

,2;3,4;5,6],[5,3;4,1;
¸ [47/15, 11/3]

{.2,0,1,ë.3,.4}) ¸ .2

[.2,0;1,ë.3;.4,ë.5])

[.4 ë.3]
mat4list() MATH/List menu

mat4list(matrix) ⇒ list

Returns a list filled with the elements in matrix.
The elements are copied from matrix row by row.

mat4lis

[1,2,3;

mat4lis

max() MATH/List menu

max(expression1, expression2) ⇒ expression
max(list1, list2) ⇒ list
max(matrix1, matrix2) ⇒ matrix

Returns the maximum of the two arguments. If
the arguments are two lists or matrices, returns a
list or matrix containing the maximum value of
each pair of corresponding elements.

max(2.3

max({1,

max(list) ⇒ expression

Returns the maximum element in list.

max({0,

max(matrix1) ⇒ matrix

Returns a row vector containing the maximum
element of each column in matrix1.

Note: See also fMax() and min().

max([1

mean() MATH/Statistics menu

mean(list[, freqlist]) ⇒ expression

Returns the mean of the elements in list.

Each freqlist element counts the number of
consecutive occurrences of the corresponding
element in list.

mean({.

mean({1

mean(matrix1[, freqmatrix]) ⇒ matrix

Returns a row vector of the means of all the
columns in matrix1.

Each freqmatrix element counts the number of
consecutive occurrences of the corresponding
element in matrix1.

In vector

mean([.

mean([1
¸

mean([1
6,2])

median() MATH/Statistics menu

median(list) ⇒ expression

Returns the median of the elements in list1.

median(

median(matrix1) ⇒ matrix

Returns a row vector containing the medians of
the columns in matrix1.

Note: All entries in the list or matrix must
simplify to numbers.

median(
¸

Appendix A: Functions and Instructions 207

ction graphing mode:

,2,3,4,5,6}!L1 ¸ {0 1 2 ...}
,3,4,3,4,6}!L2 ¸ {0 2 3 ...}
ed L1,L2 ¸ Done
Stat ¸

q(x)!y1(x) ¸ Done
lot 1,1,L1,L2 ¸ Done

"Hello there",2) ¸
"ello there"

"Hello there",7,3) ¸
"the"

"Hello there",1,5) ¸

"Hello"

"Hello there",1,0) ¸
""

{9,8,7,6},3) ¸ {7 6}

{9,8,7,6},2,2) ¸ {8 7}

{9,8,7,6},1,2) ¸ {9 8}

{9,8,7,6},1,0) ¸ {}

{"A","B","C","D"},2,2)

{"B" "C"}
MedMed MATH/Statistics/Regressions menu

MedMed list1, list2[, [list3] [, list4, list5]]

Calculates the median-median line and updates
all the system statistics variables.

All the lists must have equal dimensions except
for list5.

list1 represents xlist.
list2 represents ylist.
list3 represents frequency.
list4 represents category codes.
list5 represents category include list.

Note: list1 through list4 must be a variable name
or c1–c99 (columns in the last data variable
shown in the Data/Matrix Editor). list5 does not
have to be a variable name and cannot be c1–
c99.

In fun

{0,1
{0,2
MedM
Show

¸
Rege
NewP

¥%

mid() MATH/String menu
mid(sourceString, start[, count]) ⇒ string

Returns count characters from character string
sourceString, beginning with character number
start.

If count is omitted or is greater than the
dimension of sourceString, returns all characters
from sourceString, beginning with character
number start.

count must be ‚ 0. If count = 0, returns an empty
string.

mid(

mid(

mid(

mid(

mid(sourceList, start [, count]) ⇒ list

Returns count elements from sourceList, beginning
with element number start.

If count is omitted or is greater than the
dimension of sourceList, returns all elements from
sourceList, beginning with element number start.

count must be ‚ 0. If count = 0, returns an empty
list.

mid(

mid(

mid(

mid(

mid(sourceStringList, start[, count]) ⇒ list

Returns count strings from the list of strings
sourceStringList, beginning with element number
start.

mid(
¸

208 Appendix A: Functions and Instructions

,1.4) ¸ 1.4

2},{ë4,3}) ¸ {ë4 2}

1,ë7,1.3,.5}) ¸ ë7

,ë3,7;ë4,0,.3]) ¸
[ë4 ë3 .3]

) ¸ 7

) ¸ 1

,3) ¸ 2

3) ¸ ë2

,ë3) ¸ ë1

,ë14,16},{9,7,ë5}) ¸
{3 0 ë4}

4}!L1 ¸ {1 2 3 4}
 L1,Main,Games ¸ Done

1/3,[1,2;3,4],2) ¸

[1 2ë1 ë4/3]

(ë3,[1,2;3,4],1,2) ¸

[1 2
0 L2]

(n,[a,b;c,d],1,2) ¸

[
a
aøn+c

b
bøn+d]
min() MATH/List menu

min(expression1, expression2) ⇒ expression
min(list1, list2) ⇒ list
min(matrix1, matrix2) ⇒ matrix

Returns the minimum of the two arguments. If
the arguments are two lists or matrices, returns a
list or matrix containing the minimum value of
each pair of corresponding elements.

min(2.3

min({1,

min(list) ⇒ expression

Returns the minimum element of list.

min({0,

min(matrix1) ⇒ matrix

Returns a row vector containing the minimum
element of each column in matrix1.

Note: See also fMin() and max().

min([1

mod() MATH/Number menu

mod(expression1, expression2) ⇒ expression
mod(list1, list2) ⇒ list
mod(matrix1, matrix2) ⇒ matrix

Returns the first argument modulo the second
argument as defined by the identities:

mod(x,0) x
mod(x,y) xì y floor(x/y)

When the second argument is non-zero, the result
is periodic in that argument. The result is either
zero or has the same sign as the second
argument.

If the arguments are two lists or two matrices,
returns a list or matrix containing the modulo of
each pair of corresponding elements.

Note: See also remain().

mod(7,0

mod(7,3

mod(ë7

mod(7,ë

mod(ë7

mod({12

MoveVar CATALOG

MoveVar var, oldFolder, newFolder

Moves variable var from oldFolder to newFolder. If
newFolder does not exist, MoveVar creates it.

{1,2,3,
MoveVar

mRow() MATH/Matrix/Row ops menu

mRow(expression, matrix1, index) ⇒ matrix

Returns a copy of matrix1 with each element in
row index of matrix1 multiplied by expression.

mRow(ë

mRowAdd() MATH/Matrix/Row ops menu

mRowAdd(expression, matrix1, index1, index2)
⇒ matrix

Returns a copy of matrix1 with each element in
row index2 of matrix1 replaced with:

expression × row index1 + row index2

mRowAdd

mRowAdd
Appendix A: Functions and Instructions 209

z,3)
zø(zì2)ø(zì1)

6

1)|z=5 10

z,c)
z!

c!(zìc)!

1)/nPr(z,c)
1
c!

{5,4,3},{2,4,2}) ¸
 1 3}

[6,5;4,3],[2,2;2,2]) ¸

[
15 10
6 3]

iv(cos(x),x,h) ¸
ë(cos(xìh)ìcos(x+h))

2øh

t(nDeriv(cos(x),x,h),h,0)

ësin(x)

iv(x^3,x,0.01) ¸
3.ø(xñ+.000033)

iv(cos(x),x)|x=p/2 ¸
ë1.

iv(x^2,x,{.01,.1}) ¸
{2.øx 2.øx}

ata mydata,{1,2,3},{4,5,6}

Done

o the Data/Matrix Editor and open the
ydata to display the data variable
.)
nCr() MATH/Probability menu

nCr(expression1, expression2) ⇒ expression

For integer expression1 and expression2 with
expression1 ‚ expression2 ‚ 0, nCr() is the number
of combinations of expression1 things taken
expression2 at a time. (This is also known as a
binomial coefficient.) Both arguments can be
integers or symbolic expressions.

nCr(expression, 0) ⇒ 1

nCr(expression, negInteger) ⇒ 0

nCr(expression, posInteger) ⇒
expressionø (expressionì 1)... (expressionì posInteger+1)/

posInteger!

nCr(expression, nonInteger) ⇒ expression!/
((expressionì nonInteger)!ø nonInteger!)

nCr(

ans(

nCr(

ans(

nCr(list1, list2) ⇒ list

Returns a list of combinations based on the
corresponding element pairs in the two lists. The
arguments must be the same size list.

nCr(
{10

nCr(matrix1, matrix2) ⇒ matrix

Returns a matrix of combinations based on the
corresponding element pairs in the two matrices.
The arguments must be the same size matrix.

nCr(

nDeriv() MATH/Calculus menu

nDeriv(expression1, var[, h]) ⇒ expression
nDeriv(expression1, var, list) ⇒ list
nDeriv(list, var[, h]) ⇒ list
nDeriv(matrix, var[, h]) ⇒ matrix

Returns the numerical derivative as an
expression. Uses the central difference quotient
formula.

h is the step value. If h is omitted, it defaults to
0.001.

When using list or matrix, the operation gets
mapped across the values in the list or across the
matrix elements.

Note: See also avgRC() and d().

nDer

limi
¸

nDer

nDer

nDer

NewData CATALOG

NewData dataVar, list1[, list2] [, list3]...

Creates data variable dataVar, where the columns
are the lists in order.

Must have at least one list.

list1, list2, ..., listn can be lists as shown,
expressions that resolve to lists, or list variable
names.

NewData makes the new variable current in
the Data/Matrix Editor.

NewD
¸

(Go t
var m
below
210 Appendix A: Functions and Instructions

 games ¸ Done

(4) ¸ {0 0 0 0}

2,3) ¸ [
0 0 0
0 0 0]

[1,1;2,2;3,3;4,4;5,5;
,2;2,4;1,5],xpic ¸ Done

xpic ¸
NewData dataVar, matrix

Creates data variable dataVar based on matrix.

NewData sysData, matrix

Loads the contents of matrix into the system data
variable sysData.

NewFold CATALOG

NewFold folderName

Creates a user-defined folder with the name
folderName, and then sets the current folder to
that folder. After you execute this instruction, you
are in the new folder.

NewFold

newList() CATALOG

newList(numElements) ⇒ list

Returns a list with a dimension of numElements.
Each element is zero.

newList

newMat() CATALOG also Math/Matrix menu

newMat(numRows, numColumns) ⇒ matrix

Returns a matrix of zeros with the dimension
numRows by numColumns.

newMat(

NewPic CATALOG

NewPic matrix, picVar [, maxRow][, maxCol]

Creates a pic variable picVar based on matrix.
matrix must be an n×2 matrix in which each row
represents a pixel. Pixel coordinates start at 0,0.
If picVar already exists, NewPic replaces it.

The default for picVar is the minimum area
required for the matrix values. The optional
arguments, maxRow and maxCol, determine the
maximum boundary limits for picVar.

NewPic
5,1;4

RclPic
Appendix A: Functions and Instructions 211

f ¸ Done
sOff ¸ Done
,3,4}!L1 ¸ {1 2 3 4}
,4,5}!L2 ¸ {2 3 4 5}
lot 1,1,L1,L2,,,,4 ¸Done

 ¥% to display:

rob ¸ Done

(e^(ëx^2),x,ë1,1) ¸
1.493...

(cos(x),x,ë p,p+1íë12) ¸
ë1.041...íë12

s(x),x,ë p,p+10^(ë12)) ¸

ësin(
1

1000000000000)

1)¥¸ ë1.íë12
NewPlot CATALOG

NewPlot n, type, xList [,[yList], [frqList], [catList],
[includeCatList], [mark] [, bucketSize]]

Creates a new plot definition for plot number n.

type specifies the type of the graph plot.
1 = scatter plot
2 = xyline plot
3 = box plot
4 = histogram
5 = modified box plot

mark specifies the display type of the mark.
1 = è (box)
2 = × (cross)
3 = + (plus)
4 = é (square)
5 = ø (dot)

bucketSize is the width of each histogram
“bucket” (type = 4), and will vary based on the
window variables xmin and xmax. bucketSize
must be >0. Default = 1.

Note: n can be 1–9. Lists must be variable names
or c1–c99 (columns in the last data variable
shown in the Data/Matrix Editor), except for
includeCatList, which does not have to be a
variable name and cannot be c1–c99.

FnOf
Plot
{1,2
{2,3
NewP

Press

NewProb CATALOG

NewProb

Performs a variety of operations that let you
begin a new problem from a cleared state
without resetting the memory.

• Clears all single-character variable names
(Clear a–z) in the current folder, unless the
variables are locked or archived.

• Turns off all functions and stat plots (FnOff
and PlotsOff) in the current graphing mode.

• Perfoms ClrDraw, ClrErr, ClrGraph,
ClrHome, ClrIO, and ClrTable.

NewP

nInt() MATH/Calculus menu

nInt(expression1, var, lower, upper) ⇒ expression

If the integrand expression1 contains no variable
other than var, and if lower and upper are
constants, positive ˆ, or negative ˆ, then nInt()
returns an approximation of ‰(expression1, var,
lower, upper). This approximation is a weighted
average of some sample values of the integrand
in the interval lower<var<upper.

nInt

The goal is six significant digits. The adaptive
algorithm terminates when it seems likely that
the goal has been achieved, or when it seems
unlikely that additional samples will yield a
worthwhile improvement.

A warning is displayed (“Questionable
accuracy”) when it seems that the goal has not
been achieved.

nInt

‰(co

ans(
212 Appendix A: Functions and Instructions

nt(e^(ëxùy)/‡(x^2ìy^2),
x),x,0,1) ¸ 3.304...

,b;c,d]) ¸

añ+bñ+cñ+dñ

,2;3,4]) ¸ 30

3 ¸ true

 ¸ x ‚ 2

 innocent ¸ innocent

se mode:

AC36 ¸ 0hFFF853C9

e mode:

1 4 dec ¸ 37

00101 ¸
111111111111111111111011010

4 dec ¸ ë38

binary entry can have up to 32 digits
ting the 0b prefix). A hexadecimal
 have up to 8 digits.

 type the 4 conversion operator,
. You can also select base

ns from the MATH/Base menu.

) ¸ zø(zì2)ø(zì1)

z=5 ¸ 60

3) ¸
1

(z+1)ø(z+2)ø(z+3)

) ¸
z!

(zìc)!

nPr(zìc,ëc) ¸ 1

Important: Zero, not the letter O.
Nest nInt() to do multiple numeric integration.
Integration limits can depend on integration
variables outside them.

nInt(nI
y,ëx,

Note: See also ‰().

norm() MATH/Matrix/Norms menu

norm(matrix) ⇒ expression

Returns the Frobenius norm.

norm([a

norm([1

not MATH/Test menu

not Boolean expression1 ⇒ Boolean expression

Returns true, false, or a simplified Boolean
expression1.

not 2>=

not x<2

not not

not integer1 ⇒ integer

Returns the one’s complement of a real integer.
Internally, integer1 is converted to a signed, 32-bit
binary number. The value of each bit is flipped (0
becomes 1, and vice versa) for the one’s
complement. Results are displayed according to
the Base mode.

You can enter the integer in any number base.
For a binary or hexadecimal entry, you must use
the 0b or 0h prefix, respectively. Without a prefix,
the integer is treated as decimal (base 10).

If you enter a decimal integer that is too large for
a signed, 32-bit binary form, a symmetric modulo
operation is used to bring the value into the
appropriate range.

In Hex ba

not 0h7

In Bin bas

0b10010

not 0b1
0b11111

ans(1)

Note: A
(not coun
entry can

Note: To
press 2
conversio

nPr() MATH/Probability menu

nPr(expression1, expression2) ⇒ expression

For integer expression1 and expression2 with
expression1 ‚ expression2 ‚ 0, nPr() is the number
of permutations of expression1 things taken
expression2 at a time. Both arguments can be
integers or symbolic expressions.

nPr(expression, 0) ⇒ 1

nPr(expression, negInteger) ⇒
1/((expression+1)ø (expression+2)...
(expressionì negInteger))

nPr(expression, posInteger) ⇒
expressionø (expressionì 1)... (expressionì posInteger+1)

nPr(expression, nonInteger) ⇒ expression!/
(expressionì nonInteger)!

nPr(z,3

ans(1)|

nPr(z,ë

nPr(z,c

ans(1)ù
Appendix A: Functions and Instructions 213

{5,4,3},{2,4,2}) ¸
{20 24 6}

[6,5;4,3],[2,2;2,2]) ¸

[
30 20
12 6]

ve(x^2+5xì25=9,x) ¸
3.844...

ve(x^2=4,x=ë1) ¸ ë2.

ve(x^2=4,x=1) ¸ 2.

: If there are multiple solutions, you can
 guess to help find a particular solution.

ve(x^2+5xì25=9,x)|x<0 ¸
ë8.844...

ve(((1+r)^24ì1)/r=26,r)|r>
d r<.25 ¸ .0068...

ve(x^2=ë1,x) ¸
"no solution found"

,3,4,3,4,6}!L1 ¸
ar L1 ¸ Done
Stat ¸
nPr(list1, list2) ⇒ list

Returns a list of permutations based on the
corresponding element pairs in the two lists. The
arguments must be the same size list.

nPr(

nPr(matrix1, matrix2) ⇒ matrix

Returns a matrix of permutations based on the
corresponding element pairs in the two matrices.
The arguments must be the same size matrix.

nPr(

nSolve() MATH/Algebra menu

nSolve(equation, varOrGuess) ⇒ number or error_string

Iteratively searches for one approximate real
numeric solution to equation for its one variable.
Specify varOrGuess as:

variable
– or –
variable = real number

For example, x is valid and so is x=3.

nSol

nSol

nSol

Note
use a

nSolve() is often much faster than solve() or
zeros(), particularly if the “|” operator is used to
constrain the search to a small interval containing
exactly one simple solution.

nSolve() attempts to determine either one point
where the residual is zero or two relatively close
points where the residual has opposite signs and
the magnitude of the residual is not excessive. If
it cannot achieve this using a modest number of
sample points, it returns the string “no solution
found.”

If you use nSolve() in a program, you can use
getType() to check for a numeric result before
using it in an algebraic expression.

Note: See also cSolve(), cZeros(), solve(), and
zeros().

nSol

nSol
0 an

nSol

OneVar MATH/Statistics menu

OneVar list1 [[, list2] [, list3] [, list4]]

Calculates 1-variable statistics and updates all the
system statistics variables.

All the lists must have equal dimensions except
for list4.

list1 represents xlist.
list2 represents frequency.
list3 represents category codes.
list4 represents category include list.

Note: list1 through list3 must be a variable name
or c1–c99 (columns in the last data variable
shown in the Data/Matrix Editor). list4 does not
have to be a variable name and cannot be c1–
c99.

{0,2
OneV
Show
214 Appendix A: Functions and Instructions

x‚4 ¸ x ‚ 3

segment:

or x‚5
END

ce=1 or choice=2
"Wrong choice"

se mode:

 or 0h3D5F ¸ 0h7BD7F

e mode:

1 or 0b100 ¸ 0b100101

binary entry can have up to 32 digits
ting the 0b prefix). A hexadecimal
 have up to 8 digits.

llo") ¸ 104

4) ¸ "h"

r(24)) ¸ 24

lpha","beta"}) ¸
{97 98}

segment:

ed 1147

1,90,10
ut i, rand(100),"Hello"

er execution:

rtant: Zero, not the letter O.
or MATH/Test menu

Boolean expression1 or Boolean expression2 ⇒ Boolean
expression

Returns true or false or a simplified form of the
original entry.

Returns true if either or both expressions simplify
to true. Returns false only if both expressions
evaluate to false.

Note: See xor.

x‚3 or

Program

©
If x<0
 Goto

©
If choi
 Disp

©

integer1 or integer2 ⇒ integer

Compares two real integers bit-by-bit using an or
operation. Internally, both integers are converted
to signed, 32-bit binary numbers. When
corresponding bits are compared, the result is 1 if
either bit is 1; the result is 0 only if both bits are
0. The returned value represents the bit results,
and is displayed according to the Base mode.

You can enter the integers in any number base.
For a binary or hexadecimal entry, you must use
the 0b or 0h prefix, respectively. Without a prefix,
integers are treated as decimal (base 10).

If you enter a decimal integer that is too large for
a signed, 32-bit binary form, a symmetric modulo
operation is used to bring the value into the
appropriate range.

Note: See xor.

In Hex ba

0h7AC36

In Bin bas

0b10010

Note: A
(not coun
entry can

ord() MATH/String menu

ord(string) ⇒ integer
ord(list1) ⇒ list

Returns the numeric code of the first character in
character string string, or a list of the first
characters of each list element.

See Appendix B for a complete listing of character
codes.

ord("he

char(10

ord(cha

ord({"a

Output CATALOG

Output row, column, exprOrString

Displays exprOrString (an expression or character
string) on the Program I/O screen at the text
coordinates (row, column).

An expression can include conversion operations
such as 4DD and 4Rect. You can also use the 4
operator to perform unit and number base
conversions.

If Pretty Print = ON, exprOrString is “pretty
printed.”

From the Program I/O screen, you can press ‡ to
display the Home screen, or a program can use
DispHome.

Program

 ©
:RandSe
:ClrIO
:For i,
: Outp
:EndFor
 ©

Result aft

Impo
Appendix A: Functions and Instructions 215

dian angle mode:

(r,q) ¸ cos(q)ør

(4,60¡) ¸ 2

({ë3,10,1.3},{p/3,ë p/4,0})

{ë3/2 5ø‡2 1.3}

dian angle mode:

(r,q) ¸ sin(q)ør

(4,60¡) ¸ 2ø‡3

({ë3,10,1.3},{p/3,ë p/4,0})

{ë3ø‡3
2 ë5ø‡2 0.}

(cos(pùx+3)) ¸ 1

: cos(pù x+3) has one argument.

(cos(pùx+3),0) ¸ "cos"
P4Rx() MATH/Angle menu

P4Rx(rExpression, qExpression) ⇒ expression
P4Rx(rList, qList) ⇒ list
P4Rx(rMatrix, qMatrix) ⇒ matrix

Returns the equivalent x-coordinate of the
(r, q) pair.

Note: The q argument is interpreted as either a
degree or radian angle, according to the current
angle mode. If the argument is an expression, you
can use ó or ô to override the angle mode setting
temporarily.

In Ra

P4Rx

P4Rx

P4Rx
¸

P4Ry() MATH/Angle menu

P4Ry(rExpression, qExpression) ⇒ expression
P4Ry(rList, qList) ⇒ list
P4Ry(rMatrix, qMatrix) ⇒ matrix

Returns the equivalent y-coordinate of the
(r, q) pair.

Note: The q argument is interpreted as either a
degree or radian angle, according to the current
angle mode. If the argument is an expression, you
can use ó or ô to override the angle mode setting
temporarily.

In Ra

P4Ry

P4Ry

P4Ry
¸

part() CATALOG

part(expression1[,nonNegativeInteger])

This advanced programming function lets you
identify and extract all of the sub-expressions in
the simplified result of expression1.

For example, if expression1 simplifies to
cos(pù x+3):

• The cos() function has one argument:
(pù x+3).

• The sum of (pù x+3) has two operands: pù x
and 3.

• The number 3 has no arguments or operands.
• The product pù x has two operands: p and x.
• The variable x and the symbolic constant p

have no arguments or operands.

If x has a numeric value and you press ¥¸,
the numeric value of pù x is calculated, the result
is added to 3, and then the cosine is calculated.
cos() is the top-level operator because it is
applied last.

part(expression1) ⇒ number

Simplifies expression1 and returns the number of
top-level arguments or operands. This returns 0 if
expression1 is a number, variable, or symbolic
constant such as p, e, i, or ˆ.

part

Note

part(expression1, 0) ⇒ string

Simplifies expression1 and returns a string that
contains the top-level function name or operator.
This returns string(expression1) if expression1 is a
number, variable, or symbolic constant such as p,
e, i, or ˆ.

part
216 Appendix A: Functions and Instructions

s(pùx+3),1) ¸ 3+pøx

plification changed the order of the
.

s(pùx+3)) ¸ 1
s(pùx+3),0) ¸ "cos"
s(pùx+3),1)!temp ¸

3+pøx
pøx+3

mp,0) ¸ "+"
mp) ¸ 2
mp,2) ¸ 3
mp,1)!temp ¸ pøx
mp,0) ¸ "ù"
mp) ¸ 2
mp,1) ¸ p
mp,2) ¸ x

y+z) ¸ 2
y+z,2) ¸ z
y+z,1) ¸ y+x

yùz) ¸ 2
yùz,2) ¸ z
yùz,1) ¸ yøx

,b,c;x,y,z],0) ¸ "{"
,b,c;x,y,z]) ¸ 2
,b,c;x,y,z],2)!temp

{x y z}
mp,0) ¸ "{"
mp) ¸ 3
mp,3) ¸ z
temp ¸ Done
part(expression1, n) ⇒ expression

Simplifies expression1 and returns the nth argument
or operand, where n is > 0 and the number of
top-level arguments or operands returned by
part(expression1). Otherwise, an error is returned.

part(co

Note: Sim
argument

By combining the variations of part(), you can
extract all of the sub-expressions in the simplified
result of expression1. As shown in the example to
the right, you can store an argument or operand
and then use part() to extract further sub-
expressions.

Note: When using part(), do not rely on any
particular order in sums and products.

part(co
part(co
part(co

temp ¸
part(te
part(te
part(te
part(te
part(te
part(te
part(te
part(te

Expressions such as (x+y+z) and (xì yì z) are
represented internally as (x+y)+z and (xì y)ì z.
This affects the values returned for the first and
second argument. There are technical reasons
why part(x+y+z,1) returns y+x instead of x+y.

part(x+
part(x+
part(x+

Similarly, xù yù z is represented internally as
(xù y)ù z. Again, there are technical reasons why
the first argument is returned as yøx instead of
xøy.

part(xù
part(xù
part(xù

When you extract sub-expressions from a matrix,
remember that matrices are stored as lists of lists,
as illustrated in the example to the right.

part([a
part([a
part([a

¸

part(te
part(te
part(te
delVar
Appendix A: Functions and Instructions 217

,x)
c
al f
getType(y)="VAR"
eturn when(y=x,1,0,0)
part(y)=0
eturn 0 ¦ y=p,ˆ,i,numbers
t(y,0)!f
f="L" ¦ if negate
eturn ëd(part(y,1),x)
f="−" ¦ if minus
eturn d(part(y,1),x)
 ìd(part(y,2),x)
f="+"
eturn d(part(y,1),x)
 +d(part(y,2),x)
f="ù"
eturn
(y,1)ùd(part(y,2),x)
 +part(y,2)ùd(part(y,1),x)
f="{"
eturn seq(d(part(y,k),x),
 k,1,part(y))
urn undef
Func

lrErr program listing example.

am segment:

IO
Var temp
emp[1]
emp[2]
p temp[2]
uess the Pattern
 i,3,20
emp[iì2]+temp[iì1]"temp[i]
isp temp[i]
isp temp,"Can you guess

 next","number?"
ause
For
The example Program Editor function to the right
uses getType() and part() to partially
implement symbolic differentiation. Studying and
completing this function can help teach you how
to differentiate manually. You could even include
functions that the cannot differentiate, such as
Bessel functions.

:d(y
:Fun
:Loc
:If
: R
:If
: R
:par
:If
: R
:If
: R

:If
: R

:If
: R
part

:If
: R

:Ret
:End

PassErr CATALOG

PassErr

Passes an error to the next level.

If “errornum” is zero, PassErr does not do
anything.

The Else clause in the program should use ClrErr
or PassErr. If the error is to be processed or
ignored, use ClrErr. If what to do with the error
is not known, use PassErr to send it to the next
error handler. (See also ClrErr.)

See C

Pause CATALOG

Pause [expression]

Suspends program execution. If you include
expression, displays expression on the Program I/O
screen.

expression can include conversion operations such
as 4DD and 4Rect. You can also use the 4
operator to perform unit and number base
conversions.

If the result of expression is too big to fit on a
single screen, you can use the cursor pad to scroll
the display.

Program execution resumes when you
press ¸.

Progr

 ©
:Clr
:Del
:1"t
:1"t
:Dis
:¦ G
:For
: t
: D
: D
the

: P
:End
 ©
218 Appendix A: Functions and Instructions

f 1,2,5 ¸ Done

f ¸ Done

 2,4,5 ¸ Done

 ¸ Done

 4Polar ¸
Polar ¸

 angle mode:

lar ¸ ei
ø
(
p

2
 ì tanê(3/4))

ø5

)4Polar ¸ e
iøp

3

ø4

 angle mode:

lar ¸(5 90ìtanê(3/4))

l({a,b,c},x) ¸
aøxñ+bøx+c

l({1,2,3,4},2) ¸ 26

l({1,2,3,4},{2,ë7})
{26 ë262}
PlotsOff CATALOG

PlotsOff [1] [, 2] [, 3] ... [, 9]

Turns off the specified plots for graphing. When
in 2-graph mode, only affects the active graph.

If no parameters, then turns off all plots.

PlotsOf

PlotsOf

PlotsOn CATALOG

PlotsOn [1] [, 2] [, 3] ... [, 9]

Turns on the specified plots for graphing. When in
2-graph mode, only affects the active graph.

If you do not include any arguments, turns on all
plots.

PlotsOn

PlotsOn

4Polar MATH/Matrix/Vector ops menu

vector 4Polar

Displays vector in polar form [r q]. The vector
must be of dimension 2 and can be a row or a
column.

Note: 4Polar is a display-format instruction, not
a conversion function. You can use it only at the
end of an entry line, and it does not update ans.

Note: See also 4Rect.

[1,3.]
[x,y] 4

complexValue 4Polar

Displays complexVector in polar form.

• Degree angle mode returns (r q).

• Radian angle mode returns reiq.

complexValue can have any complex form.
However, an reiq entry causes an error in Degree
angle mode.

Note: You must use the parentheses for an (r q)
polar entry.

In Radian

3+4i 4Po

(4 p/3

In Degree

3+4i 4Po

polyEval() MATH/List menu

polyEval(list1, expression1) ⇒ expression
polyEval(list1, list2) ⇒ expression

Interprets the first argument as the coefficient of
a descending-degree polynomial, and returns the
polynomial evaluated for the value of the second
argument.

polyEva

polyEva

polyEva
¸

Appendix A: Functions and Instructions 219

p
90","1991","1992"},var1

ction graphing mode:

,3,4,5,6,7}!L1 ¸
{1 2 3 ...}

,3,4,3,4,6}!L2 ¸
{1 2 3 ...}

rReg L1,L2 ¸ Done
Stat ¸

q(x)"y1(x) ¸ Done
lot 1,1,L1,L2 ¸ Done

am segment:

mname()
m

Prgm

uct({1,2,3,4}) ¸ 24

uct({2,x,y}) ¸ 2øxøy

uct({4,5,8,9},2,3) ¸ 40
PopUp CATALOG

PopUp itemList, var

Displays a pop-up menu containing the character
strings from itemList, waits for you to select an
item, and stores the number of your selection in
var.

The elements of itemList must be character
strings: {item1String, item2String,
item3String, ...}

If var already exists and has a valid item number,
that item is displayed as the default choice.

itemList must contain at least one choice.

PopU
{"19
¸

PowerReg MATH/Statistics/Regressions menu

PowerReg list1, list2[, [list3] [, list4, list5]]

Calculates the power regression and updates all
the system statistics variables.

All the lists must have equal dimensions except
for list5.

list1 represents xlist.
list2 represents ylist.
list3 represents frequency.
list4 represents category codes.
list5 represents category include list.

Note: list1 through list4 must be a variable name
or c1–c99 (columns in the last data variable
shown in the Data/Matrix Editor). list5 does not
have to be a variable name and cannot be c1–
c99.

In fun

{1,2

{1,2

Powe
Show

¸
Rege
NewP

¥%

Prgm CATALOG

Prgm
©

EndPrgm

Required instruction that identifies the beginning
of a program. Last line of program must be
EndPrgm.

Progr

:prg
:Prg
:
:End

Product (PI) See Π(), page 273.

product() MATH/List menu

product(list[, start[, end]]) ⇒ expression

Returns the product of the elements contained in
list. Start and end are optional. They specify a
range of elements.

prod

prod

prod
220 Appendix A: Functions and Instructions

([1,2,3;4,5,6;7,8,9])
[28 80 162]

([1,2,3;4,5,6;7,8,9],
[4,10,18]

segment:

A,B,C

c(4/3) ¸ 1 + 1/3

c(ë4/3) ¸ ë1ì1/3

c((x^2+x+1)/(x+1)+
y+1)/(y+1),x) ¸

c(ans(1))

Chg through PtText show
g similar examples.
,4 ¸

,4 ¸
product(matrix1[, start[, end]]) ⇒ matrix

Returns a row vector containing the products of
the elements in the columns of matrix1. Start and
end are optional. They specify a range of rows.

product
¸

product
1,2) ¸

Prompt CATALOG

Prompt var1[, var2] [, var3] ...

Displays a prompt on the Program I/O screen for
each variable in the argument list, using the
prompt var1?. Stores the entered expression in
the corresponding variable.

Prompt must have at least one argument.

Program

©
Prompt

©
EndPrgm

propFrac() MATH/Algebra menu

propFrac(expression1[, var]) ⇒ expression

propFrac(rational_number) returns rational_number
as the sum of an integer and a fraction having
the same sign and a greater denominator
magnitude than numerator magnitude.

propFra

propFra

propFrac(rational_expression,var) returns the sum
of proper ratios and a polynomial with respect to
var. The degree of var in the denominator exceeds
the degree of var in the numerator in each proper
ratio. Similar powers of var are collected. The
terms and their factors are sorted with var as the
main variable.

If var is omitted, a proper fraction expansion is
done with respect to the most main variable. The
coefficients of the polynomial part are then made
proper with respect to their most main variable
first and so on.

For rational expressions, propFrac() is a faster
but less extreme alternative to expand().

propFra
(y^2+

propFra

PtChg CATALOG

PtChg x, y
PtChg xList, yList

Displays the Graph screen and reverses the screen
pixel nearest to window coordinates
(x, y).

Note: Pt
continuin
PtChg 2

PtOff CATALOG

PtOff x, y
PtOff xList, yList

Displays the Graph screen and turns off the
screen pixel nearest to window coordinates
(x, y).

PtOff 2
Appendix A: Functions and Instructions 221

 3,5 ¸

st(3,5) ¸ true

xt "sample",3,5 ¸

hg 2,4 ¸

cl 40,80,30,1 ¸
cl 50,125,40,1 ¸

orz 25,1 ¸
PtOn CATALOG

PtOn x, y
PtOn xList, yList

Displays the Graph screen and turns on the screen
pixel nearest to window coordinates
(x, y).

PtOn

ptTest() CATALOG

ptTest (x, y) ⇒ Boolean constant expression
ptTest (xList, yList) ⇒ Boolean constant expression

Returns true or false. Returns true only if the
screen pixel nearest to window coordinates (x, y)
is on.

ptTe

PtText CATALOG

PtText string, x, y

Displays the Graph screen and places the
character string string on the screen at the pixel
nearest the specified (x, y) window coordinates.

string is positioned with the upper-left corner of
its first character at the coordinates.

PtTe

PxlChg CATALOG

PxlChg row, col
PxlChg rowList, colList

Displays the Graph screen and reverses the pixel
at pixel coordinates (row, col).

Note: Regraphing erases all drawn items.

PxlC

PxlCrcl CATALOG

PxlCrcl row, col, r [, drawMode]

Displays the Graph screen and draws a
circle centered at pixel coordinates (row,
col) with a radius of r pixels.

If drawMode = 1, draws the circle
(default).
If drawMode = 0, turns off the circle.
If drawMode = -1, inverts pixels along the
circle.

Note: Regraphing erases all drawn items.
See also Circle.

@ PxlCr
H PxlCr

PxlHorz CATALOG

PxlHorz row [, drawMode]

Displays the Graph screen and draws a horizontal
line at pixel position row.

If drawMode = 1, draws the line (default).
If drawMode = 0, turns off the line.
If drawMode = -1, turns a line that is on to off or
off to on (inverts pixels along the line).

Note: Regraphing erases all drawn items. See
also LineHorz.

PxlH
222 Appendix A: Functions and Instructions

Line 50,15,20,90,1 ¸
lLine 80,20,30,150,1

 25,1 ¸
25,50 ¸

5,50 ¸

5,50 ¸

"

(25,50) ¸ true
25,50 ¸

"

(25,50) ¸ false

Text "sample
0,10 ¸
lText "sample
0,50 ¸
PxlLine CATALOG

PxlLine rowStart, colStart, rowEnd, colEnd [, drawMode]

Displays the Graph screen and draws a line
between pixel coordinates (rowStart, colStart) and
(rowEnd, colEnd), including both endpoints.

If drawMode = 1, draws the line (default).
If drawMode = 0, turns off the line.
If drawMode = -1, turns a line that is on to off or
off to on (inverts pixels along the line).

Note: Regraphing erases all drawn items. See
also Line.

@ Pxl
H Px
¸

PxlOff CATALOG

PxlOff row, col
PxlOff rowList, colList

Displays the Graph screen and turns off the pixel
at pixel coordinates (row, col).

Note: Regraphing erases all drawn items.

PxlHorz
PxlOff

25,50

PxlOn CATALOG

PxlOn row, col
PxlOn rowList, colList

Displays the Graph screen and turns on the pixel
at pixel coordinates (row, col).

Note: Regraphing erases all drawn items.

PxlOn 2

pxlTest() CATALOG

pxlTest (row, col) ⇒ Boolean expression
pxlTest (rowList, colList) ⇒ Boolean expression

Returns true if the pixel at pixel coordinates (row,
col) is on. Returns false if the pixel is off.

Note: Regraphing erases all drawn items.

PxlOn 2

@ "

H ¥

PxlTest
PxlOff

@ "

H ¥

PxlTest

PxlText CATALOG

PxlText string, row, col

Displays the Graph screen and places character
string string on the screen, starting at pixel
coordinates (row, col).

string is positioned with the upper-left corner of
its first character at the coordinates.

Note: Regraphing erases all drawn items.

@ Pxl
text",2
H Px
text",2
Appendix A: Functions and Instructions 223

ert 50,1 ¸

loating-point number (9.) in m1 causes
s to be calculated in floating-point form.

,3;4,5,6;7,8,9.]!m1 ¸







1 2 3

4 5 6
7 8 9.

1,qm,rm ¸ Done







.123… .904… .408…

.492… .301… ë.816…

.861… ë.301… .408…







8.124… 9.601… 11.078…

0. .904… 1.809…
0. 0. 0.

;o,p]!m1 ¸  
m n
o p

1,qm,rm ¸ Done







m

m2 + o2

ësign(møpìnøo)øo
m2 + o2

o
m2 + o2

møsign(møpìnøo)

m2 + o2







m2 + o2

møn+oøp
m2 + o2

0
|møpì nøo|

m2 + o2
PxlVert CATALOG

PxlVert col [, drawMode]

Draws a vertical line down the screen at pixel
position col.

If drawMode = 1, draws the line (default).
If drawMode = 0, turns off the line.
If drawMode = -1, turns a line that is on to off or
off to on (inverts pixels along the line).

Note: Regraphing erases all drawn items. See
also LineVert.

PxlV

QR MATH/Matrix menu

QR matrix, qMatName, rMatName[, tol]

Calculates the Householder QR factorization of a
real or complex matrix. The resulting Q and R
matrices are stored to the specified MatNames.
The Q matrix is unitary. The R matrix is upper
triangular.

Optionally, any matrix element is treated as zero
if its absolute value is less than tol. This tolerance
is used only if the matrix has floating-point
entries and does not contain any symbolic
variables that have not been assigned a value.
Otherwise, tol is ignored.

• If you use ¥¸ or set the mode to
Exact/Approx=APPROXIMATE, computations
are done using floating-point arithmetic.

• If tol is omitted or not used, the default
tolerance is calculated as:
5Eë 14 ùmax(dim(matrix))
ù rowNorm(matrix)

The f
result

[1,2

QR m

qm ¸

rm ¸

[m,n

The QR factorization is computed numerically
using Householder transformations. The symbolic
solution is computed using Gram-Schmidt. The
columns in qMatName are the orthonormal basis
vectors that span the space defined by matrix.

QR m

qm ¸

rm ¸
224 Appendix A: Functions and Instructions

n graphing mode:

3,4,5,6,7}!L1 ¸
{1 2 3 ...}

1,2,2,3,3}!L2 ¸
{4 3 1 ...}

 L1,L2 ¸ Done
t ¸

)"y1(x) ¸ Done
 1,1,L1,L2 ¸ Done

n graphing mode:

,0,1,2,3,4,5,6}!L1 ¸
{ë2 ë1 0 ...}

2,4,2,1,4,6}!L2 ¸
{4 3 1 ...}

g L1,L2 ¸ Done
t ¸

)"y1(x) ¸ Done
 1,1,L1,L2 ¸ Done
QuadReg MATH/Statistics/Regressions menu

QuadReg list1, list2[, [list3] [, list4, list5]]

Calculates the quadratic polynomial regression
and updates the system statistics variables.

All the lists must have equal dimensions except
for list5.

list1 represents xlist.
list2 represents ylist.
list3 represents frequency.
list4 represents category codes.
list5 represents category include list.

In functio

{0,1,2,

{4,3,1,

QuadReg
ShowSta

Note: list1 through list4 must be a variable name
or c1–c99. (columns in the last data variable
shown in the Data/Matrix Editor). list5 does not
have to be a variable name and cannot be c1–c99
.

¸
Regeq(x
NewPlot

¥%

QuartReg MATH/Statistics/Regressions menu

QuartReg list1, list2[, [list3] [, list4, list5]]

Calculates the quartic polynomial regression and
updates the system statistics variables.

All the lists must have equal dimensions except
for list5.

list1 represents xlist.
list2 represents ylist.
list3 represents frequency.
list4 represents category codes.
list5 represents category include list.

Note: list1 through list4 must be a variable name
or c1–c99 (columns in the last data variable
shown in the Data/Matrix Editor). list5 does not
have to be a variable name and cannot be c1–
c99.

In functio

{ë2,ë1

{4,3,1,

QuartRe
ShowSta

¸
Regeq(x
NewPlot

¥%
Appendix A: Functions and Instructions 225

gree angle mode:

(x,y) ¸

dian angle mode:

(3,2) ¸
([3,-4,2],[0,pà4,1.5]) ¸

dian angle mode:

(3,2) ¸
(x,y) ¸
([3,-4,2],[0,pà4,1.5]) ¸

Seed 1147 ¸ Done

() ¸ .158...
(6) ¸ 5
(ë100) ¸ ë49

Seed 1147 ¸ Done

Mat(3,3) ¸






 8 ë3 6

ë2 3 ë6
 0 4 ë6

: The values in this matrix will change
time you press ¸.

Seed 1147 ¸ Done
Norm(0,1) ¸ .492...
Norm(3,4.5) ¸ ì3.543...

(Sets the random-number seed.)
R4Pq() MATH/Angle menu

R4Pq (xExpression, yExpression) ⇒ expression
R4Pq (xList, yList) ⇒ list
R4Pq (xMatrix, yMatrix) ⇒ matrix

Returns the equivalent q-coordinate of the
(x,y) pair arguments.

Note: The result is returned as either a degree or
radian angle, according to the current angle
mode.

In De

R8Pq

In Ra

R4Pq
R4Pq

R4Pr() MATH/Angle menu

R4Pr (xExpression, yExpression) ⇒ expression
R4Pr (xList, yList) ⇒ list
R4Pr (xMatrix, yMatrix) ⇒ matrix

Returns the equivalent r-coordinate of the
(x,y) pair arguments.

In Ra

R4Pr
R4Pr
R4Pr

rand() MATH/Probability menu

rand([n]) ⇒ expression

n is an integer ƒ zero.

With no parameter, returns the next random
number between 0 and 1 in the sequence. When
an argument is positive, returns a random integer
in the interval [1, n].
When an argument is negative, returns a random
integer in the interval [ë n,ë 1].

Rand

rand
rand
rand

randMat() MATH/Probability menu

randMat(numRows, numColumns) ⇒ matrix

Returns a matrix of integers between -9 and 9 of
the specified dimension.

Both arguments must simplify to integers.

Rand

rand

Note
each

randNorm() MATH/Probability menu

randNorm(mean, sd) ⇒ expression

Returns a decimal number from the specific
normal distribution. It could be any real number
but will be heavily concentrated in the interval
[mean-3ù sd, mean+3ù sd].

Rand
rand
rand
226 Appendix A: Functions and Instructions

d 1147 ¸ Done
y(x,5) ¸

ë2øx5+3øx4ì6øx3+4øxì6

d 1147 ¸ Done
¸ .158...

GDBvar ¸ Done

3i) ¸ 2

 ¸ z

iy) ¸ x

+iùb,3,i}) ¸ {a 3 0}

+iùb,3;c,i]) ¸ [
a 3
c 0]
randPoly() MATH/Probability menu

randPoly(var, order) ⇒ expression

Returns a polynomial in var of the specified order.
The coefficients are random integers in the range
ë 9 through 9. The leading coefficient will not be
zero.

order must be 0–99.

RandSee
randPol

RandSeed MATH/Probability menu

RandSeed number

If number = 0, sets the seeds to the factory
defaults for the random-number generator. If
number ƒ 0, it is used to generate two seeds,
which are stored in system variables seed1
and seed2.

RandSee
rand()

RclGDB CATALOG

RclGDB GDBvar

Restores all the settings stored in the Graph
database variable GDBvar.

For a listing of the settings, see StoGDB.

Note: It is necessary to have something saved in
GDBvar before you can restore it.

RclGDB

RclPic CATALOG

RclPic picVar [, row, column]

Displays the Graph screen and adds the picture
stored in picVar at the upper left-hand corner pixel
coordinates (row, column) using OR logic.

picVar must be a picture data type.

Default coordinates are (0, 0).

real() MATH/Complex menu

real(expression1) ⇒ expression

Returns the real part of the argument.

Note: All undefined variables are treated as real
variables. See also imag().

real(2+

real(z)

real(x+

real(list1) ⇒ list

Returns the real parts of all elements.

real({a

real(matrix1) ⇒ matrix

Returns the real parts of all elements.
real([a
Appendix A: Functions and Instructions 227

pà4, pà6]4Rect ¸

[3ø‡2
4

3ø‡2
4

3ø‡3
2]

b, c] ¸[aøcos(b)øsin(c)
aøsin(b)øsin(c) aøcos(c)]

dian angle mode:

p/3)4Rect ¸ 4øe
p

3

/3)4Rect ¸ 2+2ø 3øi

gree angle mode:

0)4Rect ¸ 2+2ø 3øi

: To type 4Rect from the keyboard, press
 for the 4 operator. To type , press
.

[ë2,ë2,0,ë6;1,ë1,9,ë9;ë5,
ë4]) ¸







1 ë2/5 ë4/5 4/5

0 1 4/7 11/7
0 0 1 ë62/71

,c;e,f,g]!m1 ¸  
a b c
e f g

m1) ¸









1

f
e

g
e

0 1
aøgìcøe
aøfìbøe

in(7,0) ¸ 7

in(7,3) ¸ 1

in(ë7,3) ¸ ë1

in(7,ë3) ¸ 1

in(ë7,ë3) ¸ ë1

in({12,ë14,16},{9,7,ë5})

{3 0 1}
4Rect MATH/Matrix/Vector ops menu

vector 4Rect

Displays vector in rectangular form [x, y, z]. The
vector must be of dimension 2 or 3 and can be a
row or a column.

Note: 4Rect is a display-format instruction, not a
conversion function. You can use it only at the
end of an entry line, and it does not update ans.

Note: See also 4Polar.

[3,

[a,

complexValue 4Rect

Displays complexValue in rectangular form a+bi.
The complexValue can have any complex form.
However, an reiq entry causes an error in Degree
angle mode.

Note: You must use parentheses for an (r q)
polar entry.

In Ra

4e^(

(4 p

In De

(4 6

Note
2
2’

ref() MATH/Matrix menu

ref(matrix1[, tol]) ⇒ matrix

Returns the row echelon form of matrix1.

Optionally, any matrix element is treated as zero
if its absolute value is less than tol. This tolerance
is used only if the matrix has floating-point
entries and does not contain any symbolic
variables that have not been assigned a value.
Otherwise, tol is ignored.

• If you use ¥¸ or set the mode to
Exact/Approx=APPROXIMATE, computations
are done using floating-point arithmetic.

• If tol is omitted or not used, the default
tolerance is calculated as:
5Eë 14 ùmax(dim(matrix1))
ù rowNorm(matrix1)

Note: See also rref().

ref(
2,4,

[a,b

ref(

remain() MATH/Number menu

remain(expression1, expression2) ⇒ expression
remain(list1, list2) ⇒ list
remain(matrix1, matrix2) ⇒ matrix

Returns the remainder of the first argument with
respect to the second argument as defined by the
identities:

remain(x,0) x
remain(x,y) xì yùiPart(x/y)

rema

rema

rema

rema

rema

rema
¸

228 Appendix A: Functions and Instructions

[9,ë7;6,4],[4,3;4,ë3])

[
1 ë1
2 1]

4}!L1 ¸ {1,2,3,4}
L1, list1 ¸ Done

{1,2,3,4}

 "Enter Your Name",str1

factoral(nn)=Func
 answer,count:1!answer
ount,1,nn
rùcount!answer:EndFor
n answer:EndFunc ̧ Done

l(3) ¸ 6

1,3,ë2,4},3) ¸
{3 ë2 4}

Hello",2) ¸ "lo"

x<3) ¸ 3
As a consequence, note that remain(ì x,y)
ì remain(x,y). The result is either zero or it has
the same sign as the first argument.

Note: See also mod().

remain(
¸

Rename CATALOG

Rename oldVarName, newVarName

Renames the variable oldVarName as newVarName.

{1,2,3,
Rename
list1 ¸

Request CATALOG

Request promptString, var

If Request is inside a Dialog...EndDlog
construct, it creates an input box for the user to
type in data. If it is a stand-alone instruction, it
creates a dialog box for this input. In either case,
if var contains a string, it is displayed and
highlighted in the input box as a default choice.
promptString must be { 20 characters.

This instruction can be stand-alone or part of a
dialog construct.

Request
¸

Return CATALOG

Return [expression]

Returns expression as the result of the function.
Use within a Func...EndFunc block, or
Prgm...EndPrgm block.

Note: Use Return without an argument to exit a
program.

Note: Enter the text as one long line on the
Home screen (without line breaks).

Define
:local
:For c
:answe
:Retur

factora

right() MATH/List menu

right(list1[, num]) ⇒ list

Returns the rightmost num elements contained in
list1.

If you omit num, returns all of list1.

right({

right(sourceString[, num]) ⇒ string

Returns the rightmost num characters contained
in character string sourceString.

If you omit num, returns all of sourceString.

right("

right(comparison) ⇒ expression

Returns the right side of an equation or
inequality.

right(
Appendix A: Functions and Instructions 229

 base mode:

te(0b1111010110000110101)

000000000000111101011000011010

te(256,1) ¸ 0b1000000000

x base mode:

te(0h78E) ¸ 0h3C7

te(0h78E,ë2) ¸0h800001E3

te(0h78E,2) ¸ 0h1E38

rtant: To enter a binary or hexadecimal
er, always use the 0b or 0h prefix (zero,
e letter O).

c base mode:

te({1,2,3,4}) ¸
{4 1 2 3}

te({1,2,3,4},ë2) ¸
{3 4 1 2}

te({1,2,3,4},1) ¸
{2 3 4 1}

te("abcd") ¸ "dabc"

te("abcd",ë2) ¸ "cdab"

te("abcd",1) ¸ "bcda"

d(1.234567,3) ¸ 1.235

d({p,‡(2),ln(2)},4) ¸
{3.1416 1.4142 .6931}
rotate() MATH/Base menu

rotate(integer1[,#ofRotations]) ⇒ integer

Rotates the bits in a binary integer. You can enter
integer1 in any number base; it is converted
automatically to a signed, 32-bit binary form. If
the magnitude of integer1 is too large for this
form, a symmetric modulo operation brings it
within the range.

In Bin

rota
¸
0b10

rota

If #of Rotations is positive, the rotation is to the
left. If #of Rotations is negative, the rotation is to
the right. The default is ë 1 (rotate right one bit).

For example, in a right rotation:

In He

rota

rota

rota

0b00000000000001111010110000110101

produces:

0b10000000000000111101011000011010

The result is displayed according to the Base
mode.

Impo
numb
not th

rotate(list1[,#ofRotations]) ⇒ list

Returns a copy of list1 rotated right or left by #of
Rotations elements. Does not alter list1.

If #of Rotations is positive, the rotation is to the
left. If #of Rotations is negative, the rotation is to
the right. The default is ë 1 (rotate right one
element).

In De

rota

rota

rota

rotate(string1[,#ofRotations]) ⇒ string

Returns a copy of string1 rotated right or left by
#of Rotations characters. Does not alter string1.

If #of Rotations is positive, the rotation is to the
left. If #of Rotations is negative, the rotation is to
the right. The default is ë 1 (rotate right one
character).

rota

rota

rota

round() MATH/Number menu

round(expression1[, digits]) ⇒ expression

Returns the argument rounded to the specified
number of digits after the decimal point.

digits must be an integer in the range 0–12. If
digits is not included, returns the argument
rounded to 12 significant digits.

Note: Display digits mode may affect how this is
displayed.

roun

round(list1[, digits]) ⇒ list

Returns a list of the elements rounded to the
specified number of digits.

roun

Rightmost bit rotates to leftmost.

Each bit rotates right.
230 Appendix A: Functions and Instructions

ln(5),ln(3);p,e^(1)],1)

[
1.6 1.1
3.1 2.7]

[3,4;ë3,ë2],1,2) ¸

 
3 4
0 2

[a,b;c,d],1,2) ¸

[
a
a+c

b
b+d]

4;5,6]!M1 ¸






1 2

3 4
5 6

M1) ¸ 3

([-5,6,-7;3,4,9;9,-9,-7])
25

4;5,6]!Mat ¸







1 2

3 4
5 6

(Mat,1,3) ¸







5 6

3 4
1 2
round(matrix1[, digits]) ⇒ matrix

Returns a matrix of the elements rounded to the
specified number of digits.

round([
¸

rowAdd() MATH/Matrix/Row ops menu

rowAdd(matrix1, rIndex1, rIndex2) ⇒ matrix

Returns a copy of matrix1 with row rIndex2
replaced by the sum of rows rIndex1 and rIndex2.

rowAdd(

rowAdd(

rowDim() MATH/Matrix/Dimensions menu

rowDim(matrix) ⇒ expression

Returns the number of rows in matrix.

Note: See also colDim().

[1,2;3,

rowdim(

rowNorm() MATH/Matrix/Norms menu

rowNorm(matrix) ⇒ expression

Returns the maximum of the sums of the absolute
values of the elements in the rows in matrix.

Note: All matrix elements must simplify to
numbers. See also colNorm().

rowNorm
¸

rowSwap() MATH/Matrix/Row ops menu

rowSwap(matrix1, rIndex1, rIndex2) ⇒ matrix

Returns matrix1 with rows rIndex1 and rIndex2
exchanged.

[1,2;3,

rowSwap

RplcPic CATALOG

RplcPic picVar[, row][, column]

Clears the Graph screen and places picture picVar
at pixel coordinates (row, column). If you do not
want to clear the screen, use RclPic.

picVar must be a picture data type variable. row
and column, if included, specify the pixel
coordinates of the upper left corner of the picture.
Default coordinates are (0, 0).

Note: For less than full-screen pictures, only the
area affected by the new picture is cleared.
Appendix A: Functions and Instructions 231

([ë2,ë2,0,ë6;1,ë1,9,ë9;
,4,ë4]) ¸









1 0 0 66/71

0 1 0
147
71

0 0 1 ë62/71

([a,b,x;c,d,y]) ¸









1 0

døx-bøy
aød-bøc

0 1
ë(cøx-aøy)
aød-bøc

egree angle mode:

45) ¸ (2)

{1,2.3,4}) ¸

1

cos(1)
1.000… 1

cos(4)

egree angle mode:

1(1) ¸ 0

adian angle mode:

1({1,2,5}) ¸

 0
p
3 cos

L1(1/5)

(3) ¸
1

cosh(3)

({1,2.3,4}) ¸

1

cosh(1)
.198… 1

cosh(4)
rref() MATH/Matrix menu

rref(matrix1[, tol]) ⇒ matrix

Returns the reduced row echelon form of matrix1.

rref
ë5,2

Optionally, any matrix element is treated as zero
if its absolute value is less than tol. This tolerance
is used only if the matrix has floating-point
entries and does not contain any symbolic
variables that have not been assigned a value.
Otherwise, tol is ignored.

• If you use ¥¸ or set the mode to
Exact/Approx=APPROXIMATE, computations
are done using floating-point arithmetic.

• If tol is omitted or not used, the default
tolerance is calculated as:
5Eë 14 ùmax(dim(matrix1))
ù rowNorm(matrix1)

Note: See also ref().

rref

sec() MATH/Trig menu

sec(expression1) ⇒ expression
sec(list1) ⇒ list

Returns the secant of expression1 or returns a list
containing the secants of all elements in list1.

Note: The argument is interpreted as either a
degree or radian angle, according to the current
angle mode.

In D

sec(

sec(

secL1() MATH/Trig menu

secL1(expression1) ⇒ expression
secL1(list1) ⇒ list

Returns the angle whose secant is expression1 or
returns a list containing the inverse secants of
each element of list1.

Note: The result is interpreted as either a degree
or radian angle, according to the current angle
mode.

In D

secL

In R

secL

sech() MATH/Hyperbolic menu

sech(expression1) ⇒ expression
sech(list1) ⇒ list

Returns the hyperbolic secant of expression1 or
returns a list containing the hyperbolic secants of
the list1 elements.

sech

sech
232 Appendix A: Functions and Instructions

an angle and
ular complex mode:

1) ¸ 0

{1,L2,2.1}) ¸

0 (
2 ¦ p
3) ¦ i 1.074… ¦ i

segment:

1,0}
1,2,1}

segment:

lc x

segment:

at x
sechL1() MATH/Hyperbolic menu

sechL1(expression1) ⇒ expression
sechL1 (list1) ⇒ list

Returns the inverse hyperbolic secant of
expression1 or returns a list containing the
inverse hyperbolic secants of each element of
list1.

In Radi
Rectang

sechL1(

sechL1(

Send CATALOG

Send list

CBL 2é/CBLé (Calculator-Based Laboratoryé) or
CBRé (Calculator-Based Rangeré) instruction.
Sends list to the link port.

Program

©
:Send {
:Send {

©

SendCalc CATALOG

SendCalc var

Sends variable var to the link port, where another
unit linked to that port can receive the variable
value. The receiving unit must be on the Home
screen or must execute GetCalc from a program.

If you send from a TI-89, TI-92 Plus, or
Voyage™ 200 to a TI-92, an error occurs if the
TI-92 executes GetCalc from a program. In this
case, the sending unit must use SendChat
instead.

Program

©
:a+b!x
:SendCa

©

@ SendCalc var[,port]

Sends contents of var from a TI-89 Titanium to
another TI-89 Titanium.

If the port is not specified, or port = 0 is specified,
the TI-89 Titanium sends data using the USB port
if connected, if not, it will send using the I/O port.

If port = 1, the TI-89 Titanium sends data using
the USB port only.

If port = 2, the TI-89 Titanium sends data using
the I/O port only.

SendChat CATALOG

SendChat var

A general alternative to SendCalc, this is useful
if the receiving unit is a TI-92 (or for a generic
"chat" program that allows either a TI-92,
Voyage™ 200, or TI-92 Plus to be used). Refer to
SendCalc for more information.

SendChat sends a variable only if that variable is
compatible with the TI-92, which is typically true
in "chat" programs. However, SendChat will
not send an archived variable, a TI-89 graph data
base, etc.

Program

 ©
:a+b!x
:SendCh
 ©
Appendix A: Functions and Instructions 233

n^2,n,1,6) ¸
{1 4 9 16 25 36}

1/n,n,1,10,2) ¸
{1 1/3 1/5 1/7 1/9}

seq(1àn^2,n,1,10,1)) ¸

196...
127...

ss ¥ ¸ to get: 1.549...

ate(2001,10,31) ¸
{2001 11 1}

er values:
MM/DD/YY 5 = YY.MM.DD
DD/MM/YY 6 = MM-DD-YY
MM.DD.YY 7 = DD-MM-YY
DD.MM.YY 8 = YY-MM-DD

old chris ¸ Done

old(main) ¸ "chris"

old(chris)!oldfoldr ¸
"main"

¸ 1

old(#oldfoldr) ¸ "chris"

a

s\a ¸ 1

raph("Graph Order","Seq")
"SEQ"

raph("Coordinates","Off")
"RECT"

: Capitalization and blank spaces are
nal when entering mode names.
seq() MATH/List menu

seq(expression, var, low, high[, step]) ⇒ list

Increments var from low through high by an
increment of step, evaluates expression, and
returns the results as a list. The original contents
of var are still there after seq() is completed.

var cannot be a system variable.

The default value for step = 1.

seq(

seq(

sum(

or pre

setDate() CATALOG

setDate(year,month,day) ⇒ listold

Sets the clock to the date given in the argument
and returns a list. (Note: The year must fall in
the range 1997 - 2132.) The returned list is in
{yearold,monthold,dayold} format. The returned
date is the previous clock value.

Enter the year as a four-digit integer. The month
and day can be either one- or two-digit integers.

setD

 setDtFmt() CATALOG

setDtFmt(integer) ⇒ integerold

Sets the date format for the desktop according to
the argument and returns the previous date
format value.

Integ
1 =
2 =
3 =
4 =

setFold() CATALOG

setFold(newfolderName) ⇒ oldfolderString

Returns the name of the current folder as a string
and sets newfolderName as the current folder.

The folder newfolderName must exist.

newF

setF

setF

1!a

setF

a ¸

chri

setGraph() CATALOG

setGraph(modeNameString, settingString) ⇒ string

Sets the Graph mode modeNameString to
settingString, and returns the previous setting of
the mode. Storing the previous setting lets you
restore it later.

modeNameString is a character string that specifies
which mode you want to set. It must be one of
the mode names from the table below.

settingString is a character string that specifies the
new setting for the mode. It must be one of the
settings listed below for the specific mode you
are setting.

setG
¸

setG
¸

Note
optio
234 Appendix A: Functions and Instructions

raph mode)
 mode)

tour Levels", "Wire and Contour",

2", "y1-vs-y2' ", "y1'-vs-y2' " 5

2È.

("Angle","Degree")
"RADIAN"

 ¸
‡2
2

("Angle","Radian")
"DEGREE"

) ¸
‡2
2

("Display Digits",
) ¸ "FLOAT"

3.14

 ("Display Digits",
) ¸ "FIX 2"

3.141...

 ({"Split Screen",
ight","Split 1 App",
,"Split 2
able"})

{"Split 2 App" "Graph"
 "Split 1 App" "Home"

 "Split Screen" "FULL"}

pitalization and blank spaces are
hen entering mode names. Also,

s in these examples may be different
nit.
Mode Name Settings

"Coordinates" "Rect", "Polar", "Off"

"Graph Order" "Seq", "Simul" 1

"Grid" "Off", "On" 2

"Axes" "Off", "On" (not 3D g
"Off", "Axes", "Box" (3D graph

"Leading Cursor" "Off", "On" 2

"Labels" "Off", "On"

"Style" "Wire Frame", "Hidden Surface", "Con
"Implicit Plot" 3

"Seq Axes" "Time", "Web", "U1-vs-U2" 4

"DE Axes" "Time", "t-vs-y' ", "y-vs-y' ", "y1-vs-y

Tip: To type a prime symbol ('), press

"Solution Method" "RK", "Euler" 5

"Fields" "SlpFld", "DirFld", "FldOff" 5

1Not available in Sequence, 3D, or Diff Equations graph mode.
2Not available in 3D graph mode.
3Applies only to 3D graph mode.
4Applies only to Sequence graph mode.
5Applies only to Diff Equations graph mode.

setMode() CATALOG

setMode(modeNameString, settingString) ⇒ string
setMode(list) ⇒ stringList

Sets mode modeNameString to the new setting
settingString, and returns the current setting of
that mode.

modeNameString is a character string that specifies
which mode you want to set. It must be one of
the mode names from the table below.

settingString is a character string that specifies the
new setting for the mode. It must be one of the
settings listed below for the specific mode you
are setting.

list contains pairs of keyword strings and will set
them all at once. This is recommended for
multiple-mode changes. The example shown may
not work if each of the pairs is entered with a
separate setMode() in the order shown.

Use setMode(var) to restore settings saved with
getMode("ALL")! var.

Note: To set or return information about the
Unit System mode, use setUnits() or getUnits()
instead of setMode() or getMode().

setMode
¸

sin(45)

setMode
¸

sin(pà4

setMode
"Fix 2"

p ¥¸

setMode
"Float"

p ¥¸

setMode
"Left-R
"Graph"
App","T
¸

Note: Ca
optional w
the result
on your u
Appendix A: Functions and Instructions 235

, "Sequence", "3D", "Diff Equations"
t", "Float 1", ..., "Float 12"

ng"

erical"

itor", "Graph", "Table", "Data/Matrix
ditor", "Numeric Solver", "Flash App"

itor", "Graph", "Table", "Data/Matrix
ditor", "Numeric Solver", "Flash App"

, "Sequence", "3D", "Diff Equations"
0 only)

able("Graph <ì>
e","ON")

"OFF"

able("Independent","AUTO")
"ASK"

: Capitalization and blank spaces are
nal when entering parameters.

ime(11,32,50)
{10 44 49}
Mode Name Settings

"Graph" "Function", "Parametric", "Polar"
"Display Digits" "Fix 0", "Fix 1", ..., "Fix 12", "Floa
"Angle" "Radian", "Degree"
"Exponential Format" "Normal", "Scientific", "Engineeri
"Complex Format" "Real", "Rectangular", "Polar"
"Vector Format" "Rectangular", "Cylindrical", "Sph
"Pretty Print" "Off", "On"
"Split Screen" "Full", "Top-Bottom", "Left-Right"
"Split 1 App" "Home", "Y= Editor", "Window Ed

Editor", "Program Editor", "Text E
"Split 2 App" "Home", "Y= Editor", "Window Ed

Editor", "Program Editor", "Text E
"Number of Graphs" "1", "2"
"Graph2" "Function", "Parametric", "Polar"
"Split Screen Ratio" "1:1", "1:2", "2:1" (Voyage™ 20
"Exact/Approx" "Auto", "Exact", "Approximate"
"Base" "Dec", "Hex", "Bin"
"Language" "English", "Alternate Language"
“Apps Desktop” “Off”, “On”

setTable() CATALOG

setTable(modeNameString, settingString) ⇒ string

Sets the table parameter modeNameString to
settingString, and returns the previous setting of
the parameter. Storing the previous setting lets
you restore it later.

modeNameString is a character string that specifies
which parameter you want to set. It must be one
of the parameters from the table below.

settingString is a character string that specifies the
new setting for the parameter. It must be one of
the settings listed below for the specific
parameter you are setting.

setT
Tabl
¸

setT
¸

¥&

Note
optio

Parameter Name Settings

"Graph <-> Table" "Off", "On"

"Independent" "Auto", "Ask"

 setTime() CATALOG

setTime(hour,minute,second) ⇒ listold

Sets the clock to the time given in the argument
and returns a list. The list is in
{hourold,minuteold,secondold} format. The returned
time is the previous clock value.

Enter the hour in the 24 hour format, in which 13 =
1 p.m.

setT

236 Appendix A: Functions and Instructions

lues:

 hour clock

 hour clock

ich Mean Time is 14:07:07, it is:

.m. in Denver, Colorado (Mountain
Time)
utes from GMT)

p.m. in Brussels, Belgium (Central
 Standard Time)
utes from GMT)

ames must begin with an underscore

lso select units from a menu by

 9
 À

s({"SI"}) ¸
{"SI" "Area" "NONE"

"Capacitance" "_F" ...}

s({"CUSTOM","Length",
Mass","_gm"}) ¸

{"SI" "Length" "_m"
"Mass" "_kg" ...}

ur screen may display different
 setTmFmt() CATALOG

setTmFmt(integer) ⇒ integerold

Sets the time format for the desktop according to
the argument and returns the previous time
format value.

Integer va

12 = 12

24 = 24

 setTmZn() CATALOG

setTmZn(integer) ⇒ integerold

Sets the time zone according to the argument and
returns the previous time zone value.

The time zone is defined by an integer that gives
the minutes offset from Greenwich Mean Time
(GMT), as established in Greenwich, England. For
example, if the time zone is offset from GMT by
two hours, the device would return 120
(minutes).

Integers for time zones west of GMT are
negative.

Integers for time zones east of GMT are positive.

If Greenw

7:07:07 a
Standard
(–420 min

15:07:07
European
(+60 min

setUnits() CATALOG

setUnits(list1) ⇒ list

Sets the default units to the values specified in
list1, and returns a list of the previous defaults.

• To specify the built-in SI (metric) or ENG/US
system, list1 uses the form:

{"SI"} or {"ENG/US"}

• To specify a custom set of default units, list1
uses the form:

{"CUSTOM", "cat1", "unit1" [, "cat2", "unit2", …]}

where each cat and unit pair specifies a
category and its default unit. (You can specify
built-in units only, not user-defined units.) Any
category not specified will use its previous
custom unit.

All unit n
_.

@ ¥
H 2

You can a
pressing:

@ 2
H ¥

setUnit

setUnit
"_cm","

Note: Yo
units.

• To return to the previous custom default units,
list1 uses the form:

{"CUSTOM"}

If you want different defaults depending on the
situation, create separate lists and save them to
unique list names. To use a set of defaults,
specify that list name in setUnits().

You can use setUnits() to restore settings
previously saved with setUnits() ! var or with
getUnits() ! var.
Appendix A: Functions and Instructions 237

 ZoomTrig viewing window:

e cos(x),sin(x) ¸

"

¥"

raw ¸ Done
e cos(x),sin(x),0,5 ¸

"

¥"

raw ¸ Done
e cos(x),sin(x),0,5,2 ¸

"

¥"

raw ¸ Done
e cos(x),sin(x),0,5,2,1
Shade CATALOG

Shade expr1, expr2, [xlow], [xhigh], [pattern], [patRes]

Displays the Graph screen, graphs expr1 and
expr2, and shades areas in which expr1 is less than
expr2. (expr1 and expr2 must be expressions that
use x as the independent variable.)

xlow and xhigh, if included, specify left and right
boundaries for the shading. Valid inputs are
between xmin and xmax. Defaults are xmin and
xmax.

pattern specifies one of four shading patterns:
1 = vertical (default)
2 = horizontal
3 = negative-slope 45¡
4 = positive-slope 45¡

patRes specifies the resolution of the shading
patterns:
1= solid shading
2= 1 pixel spacing (default)
3= 2 pixels spacing

©
10= 9 pixels spacing

Note: Interactive shading is available on the
Graph screen through the Shade instruction.
Automatic shading of a specific function is
available through the Style instruction. Shade is
not valid in 3D graphing mode.

In the

Shad

@

H

ClrD
Shad

@

H

ClrD
Shad

@

H

ClrD
Shad
¸

238 Appendix A: Functions and Instructions

e mode:

b1111010110000110101)

0b111101011000011010

56,1) ¸
0b1000000000

se mode:

h78E) ¸ 0h3C7

h78E,ë2) ¸ 0h1E3

h78E,2) ¸ 0h1E38

nt: To enter a binary or hexadecimal
lways use the 0b or 0h prefix (zero,
tter O).

se mode:

1,2,3,4}) ¸
{undef 1 2 3}

1,2,3,4},ë2) ¸
{undef undef 1 2}

1,2,3,4},1) ¸
{2 3 4 undef}

abcd") ¸ " abc"

abcd",ë2) ¸ " ab"

abcd",1) ¸ "bcd "
shift() CATALOG

shift(integer1[,#ofShifts]) ⇒ integer

Shifts the bits in a binary integer. You can enter
integer1 in any number base; it is converted
automatically to a signed, 32-bit binary form. If
the magnitude of integer1 is too large for this
form, a symmetric modulo operation brings it
within the range.

If #ofShifts is positive, the shift is to the left. If
#ofShifts is negative, the shift is to the right. The
default is ë 1 (shift right one bit).

In a right shift, the rightmost bit is dropped and 0
or 1 is inserted to match the leftmost bit. In a left
shift, the leftmost bit is dropped and 0 is inserted
as the rightmost bit.

For example, in a right shift:

In Bin bas

shift(0
¸

shift(2

In Hex ba

shift(0

shift(0

shift(0

Importa
number, a
not the le

0b00000000000001111010110000110101

produces:

0b00000000000000111101011000011010

The result is displayed according to the Base
mode. Leading zeros are not shown.

shift(list1 [,#ofShifts]) ⇒ list

Returns a copy of list1 shifted right or left by
#ofShifts elements. Does not alter list1.

If #ofShifts is positive, the shift is to the left. If
#ofShifts is negative, the shift is to the right. The
default is ë 1 (shift right one element).

Elements introduced at the beginning or end of
list by the shift are set to the symbol “undef”.

In Dec ba

shift({

shift({

shift({

shift(string1 [,#ofShifts]) ⇒ string

Returns a copy of string1 shifted right or left by
#ofShifts characters. Does not alter string1.

If #ofShifts is positive, the shift is to the left. If
#ofShifts is negative, the shift is to the right. The
default is ë 1 (shift right one character).

Characters introduced at the beginning or end of
string by the shift are set to a space.

shift("

shift("

shift("

Inserts 0 if leftmost bit is 0,
or 1 if leftmost bit is 1.

Each bit shifts right.

Dropped
Appendix A: Functions and Instructions 239

,3,4,5}!L1 ¸ {1 2 3 4 5}
,6,10,25}!L2 ¸

{0 2 6 10 25}
ar L1,L2 ¸
Stat ¸

(ë3.2) ¸ ë1.

({2,3,4,ë5}) ¸
{1 1 1 ë1}

(1+abs(x)) ¸ 1

plex format mode is REAL:

([ë3,0,3]) ¸ [ë1 „1 1]

 for x and y: x + 2y = 1
3x + 4y = ë 1

lt([1,2;3,4],[1;ë1]) ¸

[
ë3
2]

olution is x=ë 3 and y=2.

: ax + by = 1
cx + dy = 2

;c,d]!matx1 ¸ [
a b
c d]

lt(matx1,[1;2]) ¸









ë(2øbìd)

aødìbøc

2øaìc

aødìbøc
ShowStat CATALOG

ShowStat

Displays a dialog box containing the last
computed statistics results if they are still valid.
Statistics results are cleared automatically if the
data to compute them has changed.

Use this instruction after a statistics calculation,
such as LinReg.

{1,2
{0,2

TwoV
Show

sign() MATH/Number menu

sign(expression1) ⇒ expression
sign(list1) ⇒ list
sign(matrix1) ⇒ matrix

For real and complex expression1, returns
expression1/abs(expression1) when expression1ƒ 0.

Returns 1 if expression1 is positive.
Returns ë 1 if expression1 is negative.
sign(0) returns „1 if the complex format mode is
REAL; otherwise, it returns itself.
sign(0) represents the unit circle in the complex
domain.

For a list or matrix, returns the signs of all the
elements.

sign

sign

sign

If com

sign

simult() MATH/Matrix menu

simult(coeffMatrix, constVector[, tol]) ⇒ matrix

Returns a column vector that contains the
solutions to a system of linear equations.

coeffMatrix must be a square matrix that contains
the coefficients of the equations.

constVector must have the same number of rows
(same dimension) as coeffMatrix and contain the
constants.

Optionally, any matrix element is treated as zero
if its absolute value is less than tol. This tolerance
is used only if the matrix has floating-point
entries and does not contain any symbolic
variables that have not been assigned a value.
Otherwise, tol is ignored.

• If you use ¥¸ or set the mode to
Exact/Approx=APPROXIMATE, computations
are done using floating-point arithmetic.

• If tol is omitted or not used, the default
tolerance is calculated as:
5Eë 14 ùmax(dim(coeffMatrix))
ù rowNorm(coeffMatrix)

Solve

simu

The s

Solve

[a,b

simu
240 Appendix A: Functions and Instructions

 x + 2y = 1 x + 2y = 2
x + 4y = ë 1 3x + 4y = ë 3

[1,2;3,4],[1,2;ë1,ë3])

[
ë3 ë7
2 9/2]

st system, x=ë 3 and y=2. For the
stem, x=ë 7 and y=9/2.

 angle mode:

4)ô) ¸
‡2
2

 ¸
‡2
2

60,90}) ¸ {0
‡3
2 1}

 angle mode:

) ¸
‡2
2

¡) ¸
‡2
2

 angle mode:

,5,3;4,2,1;6,ë2,1]) ¸







.942… ë.045… ë.031…

ë.045… .949… ë.020…
ë.048… ë.005… .961…

 angle mode:

) ¸ 90

 angle mode:

0,.2,.5}) ¸
{0 .201... .523...}

 angle mode and Rectangular
format mode:

1,5,3;4,2,1;6,ë2,1])



.064…øi 1.490…ì 2.105…øi …

1.515…øi .947…ì.778…øi …
2.632…øi ë 1.790…+1.271…øi …
simult(coeffMatrix, constMatrix[, tol]) ⇒ matrix

Solves multiple systems of linear equations,
where each system has the same equation
coefficients but different constants.

Each column in constMatrix must contain the
constants for a system of equations. Each column
in the resulting matrix contains the solution for
the corresponding system.

Solve:
3

simult(
¸

For the fir
second sy

sin() @ 2W key H W key

sin(expression1) ⇒ expression
sin(list1) ⇒ list

sin(expression1) returns the sine of the argument
as an expression.

sin(list1) returns a list of the sines of all elements
in list1.

Note: The argument is interpreted as either a
degree or radian angle, according to the current
angle mode. You can use ó or ô to override the
angle mode setting temporarily.

In Degree

sin((p/

sin(45)

sin({0,

In Radian

sin(p/4

sin(45

sin(squareMatrix1) ⇒ squareMatrix

Returns the matrix sine of squareMatrix1. This is
not the same as calculating the sine of each
element. For information about the calculation
method, refer to cos().

squareMatrix1 must be diagonalizable. The result
always contains floating-point numbers.

In Radian

sin([1

sinê () @ ¥ Qkey H 2 Q key

sinê (expression1) ⇒ expression
sinê (list1) ⇒ list

sinê (expression1) returns the angle whose sine is
expression1 as an expression.

sinê (list1) returns a list of the inverse sines of
each element of list1.

Note: The result is returned as either a degree or
radian angle, according to the current angle
mode setting.

In Degree

sinê(1

In Radian

sinê({

sinê(squareMatrix1) ⇒ squareMatrix

Returns the matrix inverse sine of squareMatrix1.
This is not the same as calculating the inverse
sine of each element. For information about the
calculation method, refer to cos().

squareMatrix1 must be diagonalizable. The result
always contains floating-point numbers.

In Radian
complex

sinê([
¸



ë.164…ì
.725…ì
2.083…ì
Appendix A: Functions and Instructions 241

(1.2) ¸ 1.509...

({0,1.2,3.}) ¸
{0 1.509... 10.017...}

dian angle mode:

([1,5,3;4,2,1;6,ë2,1])







360.954 305.708 239.604

352.912 233.495 193.564
298.632 154.599 140.251

ê(0) ¸ 0

ê({0,2.1,3}) ¸
{0 1.487... sinhê(3)}

dian angle mode:

ê([1,5,3;4,2,1;6,ë2,1])







.041… 2.155… 1.158…

1.463… .926… .112…
2.750… ë1.528… .572…
sinh() MATH/Hyperbolic menu

sinh(expression1) ⇒ expression
sinh(list1) ⇒ list

sinh (expression1) returns the hyperbolic sine of
the argument as an expression.

sinh (list) returns a list of the hyperbolic sines of
each element of list1.

sinh

sinh

sinh(squareMatrix1) ⇒ squareMatrix

Returns the matrix hyperbolic sine of
squareMatrix1. This is not the same as calculating
the hyperbolic sine of each element. For
information about the calculation method, refer
to cos().

squareMatrix1 must be diagonalizable. The result
always contains floating-point numbers.

In Ra

sinh
¸

sinhê () MATH/Hyperbolic menu

sinhê (expression1) ⇒ expression
sinhê (list1) ⇒ list

sinhê (expression1) returns the inverse hyperbolic
sine of the argument as an expression.

sinhê (list1) returns a list of the inverse
hyperbolic sines of each element of list1.

sinh

sinh

sinhê(squareMatrix1) ⇒ squareMatrix

Returns the matrix inverse hyperbolic sine of
squareMatrix1. This is not the same as calculating
the inverse hyperbolic sine of each element. For
information about the calculation method, refer
to cos().

squareMatrix1 must be diagonalizable. The result
always contains floating-point numbers.

In Ra

sinh
¸

242 Appendix A: Functions and Instructions

n graphing mode:

x,1,361,30)!L1 ¸
{1 31 61 …}

,11,13.5,16.5,19,19.5,17

2.5,8.5,6.5,5.5}!L2 ¸
{5.5 8 11 …}

 L1,L2 ¸ Done
at ¸

x)!y1(x) ¸ Done
t 1,1,L1,L2 ¸ Done

ùx^2+bùx+c=0,x) ¸

x =
bñ -4øaøc-b

2øa

or x =
ë(bñ -4øaøc+b)

2øa

 a=1 and b=1 and c=1

Error: Non-real result

xìa)e^(x)=ëxù(xìa),x)

x = a or x =ë.567...

ì1)/(xì1)+xì3 ¸
2øxì2

ntry(1)=0,x) ¸ x = 1
)|ans(1) ¸ undef
ntry(3),x,1) ¸ 0

xì2 ‚ 2x,x) ¸ x ‚ 2/3

olve((xìa)e^(x)=ëxù
,x)) ¸

ex + x = 0 or x = a
SinReg MATH/Statistics/Regressions menu

SinReg list1, list2 [, [iterations] , [period] [, list3, list4]]

Calculates the sinusoidal regression and updates
all the system statistics variables.

All the lists must have equal dimensions except
for list4.

list1 represents xlist.
list2 represents ylist.
list3 represents category codes.
list4 represents category include list.

iterations specifies the maximum number of times
(1 through 16) a solution will be attempted. If
omitted, 8 is used. Typically, larger values result
in better accuracy but longer execution times, and
vice versa.

period specifies an estimated period. If omitted,
the difference between values in list1 should be
equal and in sequential order. If you specify
period, the differences between x values can be
unequal.

Note: list1 through list3 must be a variable name
or c1–c99 (columns in the last data variable
shown in the Data/Matrix Editor). list4 does not
have to be a variable name and cannot be c1–
c99.

The output of SinReg is always in radians,
regardless of the angle mode setting.

In functio

seq(x,

{5.5,8
,
14.5,1

SinReg
ShowSt

¸

regeq(
NewPlo
¥%

„9

solve() MATH/Algebra menu

solve(equation, var) ⇒ Boolean expression
solve(inequality, var) ⇒ Boolean expression

Returns candidate real solutions of an equation or
an inequality for var. The goal is to return candidates
for all solutions. However, there might be equations
or inequalities for which the number of solutions is
infinite.

solve(a

Solution candidates might not be real finite
solutions for some combinations of values for
undefined variables.

ans(1)|
¸

For the AUTO setting of the Exact/Approx mode,
the goal is to produce exact solutions when they are
concise, and supplemented by iterative searches
with approximate arithmetic when exact solutions
are impractical.

solve((
¸

Due to default cancellation of the greatest common
divisor from the numerator and denominator of
ratios, solutions might be solutions only in the limit
from one or both sides.

(x+1)(x

solve(e
entry(2
limit(e

For inequalities of types ‚, , <, or >, explicit
solutions are unlikely unless the inequality is linear
and contains only var.

solve(5

For the EXACT setting of the Exact/Approx mode,
portions that cannot be solved are returned as an
implicit equation or inequality.

exact(s
(xìa)
Appendix A: Functions and Instructions 243

dian angle mode:

e(tan(x)=1/x,x)|x>0 and
¸ x =.860...

e(x=x+1,x) ¸ false

e(x=x,x) ¸ true

1 and solve(x^2ƒ9,x) ¸
x 1 and x ƒ ë3

dian angle mode:

e(sin(x)=0,x) ¸ x = @n1ø p

e(x^(1/3)=ë1,x) ¸ x = ë1

e(‡(x)=ë2,x) ¸ false

e(ë‡(x)=ë2,x) ¸ x = 4

e(y=x^2ì2 and
=ë1,{x,y}) ¸

x=1 and y=ë1
or x=ë3/2 and y=1/4
Use the “|” operator to restrict the solution interval
and/or other variables that occur in the equation or
inequality. When you find a solution in one interval,
you can use the inequality operators to exclude that
interval from subsequent searches.

In Ra

solv
x<1

false is returned when no real solutions are found.
true is returned if solve() can determine that any
finite real value of var satisfies the equation or
inequality.

solv

solv

Since solve() always returns a Boolean result, you
can use “and,” “or,” and “not” to combine results
from solve() with each other or with other Boolean
expressions.

2xì1

Solutions might contain a unique new undefined
variable of the form @nj with j being an integer in
the interval 1–255. Such variables designate an
arbitrary integer.

In Ra

solv

In real mode, fractional powers having odd
denominators denote only the real branch.
Otherwise, multiple branched expressions such as
fractional powers, logarithms, and inverse
trigonometric functions denote only the principal
branch. Consequently, solve() produces only
solutions corresponding to that one real or principal
branch.

Note: See also cSolve(), cZeros(), nSolve(), and
zeros().

solv

solv

solv

solve(equation1 and equation2 [and …], {varOrGuess1,
varOrGuess2 [, …]}) ⇒ Boolean expression

Returns candidate real solutions to the
simultaneous algebraic equations, where each
varOrGuess specifies a variable that you want to
solve for.

Optionally, you can specify an initial guess for a
variable. Each varOrGuess must have the form:

variable
– or –
variable = real or non-real number

For example, x is valid and so is x=3.

solv
x+2y
244 Appendix A: Functions and Instructions

^2+y^2=r^2 and
2+y^2=r^2,{x,y}) ¸

x=
r
2
 and y=

3ør
2

or x=
r
2
 and y=

ë 3ør
2

^2+y^2=r^2 and
2+y^2=r^2,{x,y,z}) ¸

x=
r
2
 and y=

3ør
2

 and z=@1

r
2
 and y=

ë 3ør
2

 and z=@1

+e^(z)ùy=1 and
n(z),{x,y}) ¸

in(z)+1
ez +1

 and y=
ë(sin(z)ì1)

ez +1

^(z)ùy=1 and
(z),{y,z}) ¸

y=.041… and z=3.183…
If all of the equations are polynomials and if you
do NOT specify any initial guesses, solve() uses
the lexical Gröbner/Buchberger elimination
method to attempt to determine all real
solutions.

For example, suppose you have a circle of radius r
at the origin and another circle of radius r
centered where the first circle crosses the positive
x-axis. Use solve() to find the intersections.

As illustrated by r in the example to the right,
simultaneous polynomial equations can have
extra variables that have no values, but represent
given numeric values that could be substituted
later.

solve(x
(xìr)^

You can also (or instead) include solution
variables that do not appear in the equations. For
example, you can include z as a solution variable
to extend the previous example to two parallel
intersecting cylinders of radius r.

The cylinder solutions illustrate how families of
solutions might contain arbitrary constants of the
form @k, where k is an integer suffix from 1
through 255. The suffix resets to 1 when you use
ClrHome or ƒ 8:Clear Home.

For polynomial systems, computation time or
memory exhaustion may depend strongly on the
order in which you list solution variables. If your
initial choice exhausts memory or your patience,
try rearranging the variables in the equations
and/or varOrGuess list.

solve(x
(xìr)^

or x=

If you do not include any guesses and if any
equation is non-polynomial in any variable but all
equations are linear in the solution variables,
solve() uses Gaussian elimination to attempt to
determine all real solutions.

solve(x
xìy=si

x=
ezøs

If a system is neither polynomial in all of its
variables nor linear in its solution variables,
solve() determines at most one solution using an
approximate iterative method. To do so, the
number of solution variables must equal the
number of equations, and all other variables in
the equations must simplify to numbers.

solve(e
ëy=sin
Appendix A: Functions and Instructions 245

e(e^(z)ùy=1 and
in(z),{y,z=2p}) ¸

y=.001… and z=6.281…

,4,3}!list1 ¸ {2,1,4,3}
A list1 ¸ Done

1 ¸ {1 2 3 4}
,2,1}!list2 ¸ {4 3 2 1}
A list2,list1 ¸ Done

2 ¸ {1 2 3 4}
1 ¸ {4 3 2 1}

,4,3}!list1 ¸ {2 1 4 3}
,3,4}!list2 ¸ {1 2 3 4}
D list1,list2 ¸ Done
1 ¸ {4 3 2 1}
2 ¸ {3 4 1 2}

,3]4Sphere
[3.741... 1.107... .640...]

pà4,3]4Sphere
[3.605... .785... .588...]

[‡13
p

4 cosê(
3ø‡13
13)]

Y

Z

(ρ ,θ ,φ)

θ

φ

ρ

tTmr() ¸ 148083315

kTmr(148083315) 34

tTmr()!Timer1

tTmr()!Timer2

kTmr(Timer1)!Timer1Value

kTmr(Timer2)!Timer2Value
Each solution variable starts at its guessed value
if there is one; otherwise, it starts at 0.0.

Use guesses to seek additional solutions one by
one. For convergence, a guess may have to be
rather close to a solution.

solv
ëy=s

SortA MATH/List menu

SortA listName1[, listName2] [, listName3] ...
SortA vectorName1[, vectorName2] [, vectorName3] ...

Sorts the elements of the first argument in
ascending order.

If you include additional arguments, sorts the
elements of each so that their new positions
match the new positions of the elements in the
first argument.

All arguments must be names of lists or vectors.
All arguments must have equal dimensions.

{2,1
Sort

list
{4,3
Sort

list
list

SortD MATH/List menu

SortD listName1[, listName2] [, listName3] ...
SortD vectorName1[,vectorName 2] [,vectorName 3] ...

Identical to SortA, except SortD sorts the
elements in descending order.

{2,1
{1,2
Sort
list
list

4Sphere MATH/Matrix/Vector ops menu

vector 4Sphere

Displays the row or column vector in spherical
form [r q f].

vector must be of dimension 3 and can be either a
row or a column vector.

Note: 4Sphere is a display-format instruction,
not a conversion function. You can use it only at
the end of an entry line.

[1,2
¥¸

[2,
¥¸

¸

X

 startTmr() CATALOG

startTmr() ⇒ integer

Returns the current value of the clock in its
integer representation, giving the starttime for a
timer. You can enter the starttime as an argument
in checkTmr() to determine how many seconds
have elapsed.

You can run multiple timers simultaneously.

Note: See also checkTmr() and timeCnv().

star

chec

star
©
star
©
chec
©
chec

246 Appendix A: Functions and Instructions

{a,b,c}) ¸
{1,2,5,ë6,3,ë2}) ¸

{1.3,2.5,L6.4},{3,2,5})
4.33345

[1,2,5;-3,0,1;.5,.7,3])

[2.179... 1.014... 2]

[L1.2,5.3;2.5,7.3;6,L4],
3;1,7]) ¸

[2.7005,5.44695]

segment:

,10,1
5

stdDev() MATH/Statistics menu

stdDev(list[, freqlist]) ⇒ expression

Returns the standard deviation of the elements in
list.

Each freqlist element counts the number of
consecutive occurrences of the corresponding
element in list.

Note: list must have at least two elements.

stdDev(
stdDev(

stdDev(
¸

stdDev(matrix1[, freqmatrix]) ⇒ matrix

Returns a row vector of the standard deviations
of the columns in matrix1.

Each freqmatrix element counts the number of
consecutive occurrences of the corresponding
element in matrix1.

Note: matrix1 must have at least two rows.

stdDev(
¸

stdDev(
[4,2;3,

StoGDB CATALOG

StoGDB GDBvar

Creates a Graph database (GDB) variable that
contains the current:
* Graphing mode
* Y= functions
* Window variables
* Graph format settings

1- or 2-Graph setting (split screen and ratio
settings if 2-Graph mode)
Angle mode
Real/complex mode

* Initial conditions if Sequence or
Diff Equations mode

* Table flags
* tblStart, @tbl, tblInput

You can use RclGDB GDBvar to restore the graph
environment.

*Note: These items are saved for both graphs in
2-Graph mode.

Stop CATALOG

Stop

Used as a program instruction to stop program
execution.

Program

©
For i,1
 If i=
 Stop
EndFor

©

Appendix A: Functions and Instructions 247

ng(1.2345) ¸ "1.2345"

ng(1+2) ¸ "3"

ng(cos(x)+‡(3)) ¸
"cos(x) + ‡(3)"

e 1,"thick" ¸ Done

e 10,"path" ¸ Done

: In function graphing mode, these
ples set the style of y1(x) to "Thick" and
) to "Path".
StoPic CATALOG

StoPic picVar [, pxlRow, pxlCol] [, width, height]

Displays the graph screen and copies a
rectangular area of the display to the variable
picVar.

pxlRow and pxlCol, if included, specify the upper-
left corner of the area to copy (defaults are 0, 0).

width and height, if included, specify the
dimensions, in pixels, of the area. Defaults are
the width and height, in pixels, of the current
graph screen.

Store See ! (store), page 277.

string() MATH/String menu

string(expression) ⇒ string

Simplifies expression and returns the result as a
character string.

stri

stri

stri

Style CATALOG

Style equanum, stylePropertyString

Sets the system graphing function equanum in the
current graph mode to use the graphing property
stylePropertyString.

equanum must be an integer from 1–99 and the
function must already exist.

stylePropertyString must be one of: "Line", "Dot",
"Square", "Thick", "Animate", "Path",
"Above", or "Below".

Note that in parametric graphing, only the xt half
of the pair contains the style information.

Valid style names vs. graphing mode:

Function: all styles
Parametric/Polar: line, dot, square, thick,

animate, path
Sequence: line, dot, square, thick
3D: none
Diff Equations: line, dot, square, thick,

animate, path

Note: Capitalization and blank spaces are
optional when entering stylePropertyString names.

Styl

Styl

Note
exam
y10(x
248 Appendix A: Functions and Instructions

4,5,6;7,8,9]!m1 ¸







1 2 3

4 5 6
7 8 9

m1,2,1,3,2) ¸

[
4 5
7 8]

m1,2,2) ¸

[
5 6
8 9]

2,3,4,5}) ¸ 15

2a,3a}) ¸ 6øa

(n,n,1,10)) ¸ 55

3,5,7,9},3) ¸ 21

2,3;4,5,6]) ¸[5 7 9]

2,3;4,5,6;7,8,9]) ¸
[12 15 18]

2,3;4,5,6;7,8,9],2,3)

[11,13,15]

) ¸
subMat() CATALOG

subMat(matrix1[, startRow] [, startCol] [, endRow]
[, endCol]) ⇒ matrix

Returns the specified submatrix of matrix1.

Defaults: startRow=1, startCol=1, endRow=last
row, endCol=last column.

[1,2,3;

subMat(

subMat(

Sum (Sigma) See G(), page 273.

sum() MATH/List menu

sum(list[, start[, end]]) ⇒ expression

Returns the sum of the elements in list.

Start and end are optional. They specify a range of
elements.

sum({1,

sum({a,

sum(seq

sum({1,

sum(matrix1[, start[, end]]) ⇒ matrix

Returns a row vector containing the sums of the
elements in the columns in matrix1.

Start and end are optional. They specify a range of
rows.

sum([1,

sum([1,

sum([1,

¸

switch() CATALOG

switch([integer1]) ⇒ integer

Returns the number of the active window. Also
can set the active window.

Note: Window 1 is left or top; Window 2 is right
or bottom.

If integer1 = 0, returns the active window number.

If integer1 = 1, activates window 1 and returns
the previously active window number.

If integer1 = 2, activates window 2 and returns
the previously active window number.

If integer1 is omitted, switches windows and
returns the previously active window number.

integer1 is ignored if the
TI-89 Titanium/Voyage™ 200 is not displaying a
split screen.

switch(
Appendix A: Functions and Instructions 249

,3;4,5,6;7,8,9]!mat1 ¸







1 2 3

4 5 6
7 8 9

î¸







1 4 7

2 5 8
3 6 9

;c,d]!mat2 ¸ [
a b
c d]

î¸ [
a c
b d]

,2+i;3+i,4+i]!mat3 ¸

[
1+i 2+i

3+i 4+i
]

î¸ [
1ì i 3ì i

2ì i 4ì i
]

ction graphing mode.

e 1.25xùcos(x) ¸

e cos(time),time ¸
T (transpose) MATH/Matrix menu

matrix1î ⇒ matrix

Returns the complex conjugate transpose of
matrix1.

[1,2

mat1

[a,b

mat2

[1+i

mat3

Table CATALOG

Table expression1[, expression2] [, var1]

Builds a table of the specified expressions or
functions.

The expressions in the table can also be graphed.
Expressions entered using the Table or Graph
commands are assigned increasing function
numbers starting with 1. The expressions can be
modified or individually deleted using the edit
functions available when the table is displayed by
pressing †Header. The currently selected
functions in the Y= Editor are temporarily
ignored.

To clear the functions created by Table or
Graph, execute the ClrGraph command or
display the Y= Editor.

If the var parameter is omitted, the current graph-
mode independent variable is assumed. Some
valid variations of this instruction are:

Function graphing: Table expr, x
Parametric graphing: Table xExpr, yExpr, t
Polar graphing: Table expr, q

Note: The Table command is not valid for 3D,
sequence, or diff equations graphing. As an
alternative, you may want to use BldData.

In fun

Tabl

Tabl
250 Appendix A: Functions and Instructions

 angle mode:

4)ô) ¸ 1

 ¸ 1

60,90}) ¸
{0 ‡3 undef}

 angle mode:

) ¸ 1

) ¸ 1

p/3,-p,p/4}) ¸
{0 ‡3 0 1}

 angle mode:

,5,3;4,2,1;6,ë2,1]) ¸



1… 26.088… 11.114…

… ë7.835… ë5.481…
… ë32.806… ë10.459…

 angle mode:

) ¸ 45

 angle mode:

0,.2,.5}) ¸
{0 .197... .463...}

 angle mode:

1,5,3;4,2,1;6,ë2,1])







ë.083… 1.266… .622…

.748… .630… ë.070…
1.686… ë1.182… .455…

2) ¸ .833...

,1}) ¸ {0 tanh(1)}
tan() @ 2Y key H Y key

tan(expression1) ⇒ expression
tan(list1) ⇒ list

tan(expression1) returns the tangent of the
argument as an expression.

tan(list1) returns a list of the tangents of all
elements in list1.

Note: The argument is interpreted as either a
degree or radian angle, according to the current
angle mode. You can use ó or ô to override the
angle mode temporarily.

In Degree

tan((p/

tan(45)

tan({0,

In Radian

tan(p/4

tan(45¡

tan({p,

tan(squareMatrix1) ⇒ squareMatrix

Returns the matrix tangent of squareMatrix1. This
is not the same as calculating the tangent of each
element. For information about the calculation
method, refer to cos().

squareMatrix1 must be diagonalizable. The result
always contains floating-point numbers.

In Radian

tan([1



ë28.29
12.117
36.818

tanê () @ ¥ S key H 2 S key

tanê (expression1) ⇒ expression
tanê (list1) ⇒ list

tanê (expression1) returns the angle whose
tangent is expression1 as an expression.

tanê (list1) returns a list of the inverse tangents
of each element of list1.

Note: The result is returned as either a degree or
radian angle, according to the current angle
mode setting.

In Degree

tanê(1

In Radian

tanê({

tanê(squareMatrix1) ⇒ squareMatrix

Returns the matrix inverse tangent of
squareMatrix1. This is not the same as calculating
the inverse tangent of each element. For
information about the calculation method, refer
to cos().

squareMatrix1 must be diagonalizable. The result
always contains floating-point numbers.

In Radian

tanê([
¸

tanh() MATH/Hyperbolic menu

tanh(expression1) ⇒ expression
tanh(list1) ⇒ list

tanh(expression1) returns the hyperbolic tangent
of the argument as an expression.

tanh(list) returns a list of the hyperbolic tangents
of each element of list1.

tanh(1.

tanh({0
Appendix A: Functions and Instructions 251

dian angle mode:

([1,5,3;4,2,1;6,ë2,1])







ë.097… .933… .425…

.488… .538… ë.129…
1.282… ë1.034… .428…

tangular complex format mode:

ê(0) ¸ 0

ê({1,2.1,3}) ¸

 .518... ì1.570...ø i
ln(2)

2 ì
p
2ø i}

dian angle mode and Rectangular
lex format mode:

ê([1,5,3;4,2,1;6,ë2,1])



.099…+.164…øi .267…ì 1.490…øi …

.087…ì.725…øi .479…ì.947…øi …
511…ì 2.083…øi ë.878…+1.790…øi …

or(e^(‡(x)),x,2) ¸
or(e^(t),t,4)|t=‡(x) ¸

or(1/(xù(xì1)),x,3) ¸

nd(taylor(x/(xù(xì1)),
/x,x) ¸
tanh(squareMatrix1) ⇒ squareMatrix

Returns the matrix hyperbolic tangent of
squareMatrix1. This is not the same as calculating
the hyperbolic tangent of each element. For
information about the calculation method, refer
to cos().

squareMatrix1 must be diagonalizable. The result
always contains floating-point numbers.

In Ra

tanh
¸

tanhê () MATH/Hyperbolic menu

tanhê (expression1) ⇒ expression
tanhê (list1) ⇒ list

tanhê (expression1) returns the inverse hyperbolic
tangent of the argument as an expression.

tanhê (list1) returns a list of the inverse
hyperbolic tangents of each element of list1.

In rec

tanh

tanh

{ˆ

tanhê(squareMatrix1) ⇒ squareMatrix

Returns the matrix inverse hyperbolic tangent of
squareMatrix1. This is not the same as calculating
the inverse hyperbolic tangent of each element.
For information about the calculation method,
refer to cos().

squareMatrix1 must be diagonalizable. The result
always contains floating-point numbers.

In Ra
comp

tanh
¸



ë
ë

.

taylor() MATH/Calculus menu

taylor(expression1, var, order[, point]) ⇒ expression

Returns the requested Taylor polynomial. The
polynomial includes non-zero terms of integer
degrees from zero through order in (var minus
point). taylor() returns itself if there is no
truncated power series of this order, or if it would
require negative or fractional exponents. Use
substitution and/or temporary multiplication by a
power of
(var minus point) to determine more general
power series.

point defaults to zero and is the expansion point.

tayl
tayl

tayl

expa
x,4)
252 Appendix A: Functions and Instructions

t((cos(a))^2) ¸
cos(2øa) + 1

2

t(sin(a)cos(b)) ¸
sin(aì b)+sin(a+b)

2

(sin(3f)) ¸
øsin(f)ø(cos(f))ñìsin(f)

(cos(aì b)) ¸
(a)øcos(b)+sin(a)øsin(b)

ave a nice day." ¸
Done

(152442117)
{1764 9 1 57}
tCollect() MATH\Algebra\Trig menu

tCollect(expression1) ⇒ expression

Returns an expression in which products and
integer powers of sines and cosines are converted
to a linear combination of sines and cosines of
multiple angles, angle sums, and angle
differences. The transformation converts
trigonometric polynomials into a linear
combination of their harmonics.

Sometimes tCollect() will accomplish your goals
when the default trigonometric simplification
does not. tCollect() tends to reverse
transformations done by tExpand(). Sometimes
applying tExpand() to a result from tCollect(),
or vice versa, in two separate steps simplifies an
expression.

tCollec

tCollec

tExpand() MATH\Algebra\Trig menu

tExpand(expression1) ⇒ expression

Returns an expression in which sines and cosines
of integer-multiple angles, angle sums, and angle
differences are expanded. Because of the identity
(sin(x))2+(cos(x))2=1, there are many possible
equivalent results. Consequently, a result might
differ from a result shown in other publications.

Sometimes tExpand() will accomplish your goals
when the default trigonometric simplification
does not. tExpand() tends to reverse
transformations done by tCollect(). Sometimes
applying tCollect() to a result from tExpand(),
or vice versa, in two separate steps simplifies an
expression.

Note: Degree-mode scaling by p/180 interferes
with the ability of tExpand() to recognize
expandable forms. For best results, tExpand()
should be used in Radian mode.

tExpand
4

tExpand
cos

Text CATALOG

Text promptString

Displays the character string promptString dialog
box.

If used as part of a Dialog...EndDlog block,
promptString is displayed inside that dialog box. If
used as a standalone instruction, Text creates a
dialog box to display the string.

Text "H

Then See If, page 196.

 timeCnv() CATALOG

timeCnv(seconds) ⇒ list

Converts seconds to units of time that can be
more easily understood for evaluation. The list is
in {days,hours,minutes,seconds} format.

Note: See also checkTmr() and startTmr().

timeCnv

Appendix A: Functions and Instructions 253

am segment:

log
le "This is a dialog

uest "Your name",Str1
pdown "Month you were
",
q(string(i),i,1,12),Var1
Dlog

nv(100_¡c,_¡f) ¸ 212.ø_¡F

nv(32_¡f,_¡c) ¸ 0.ø_¡C

nv(0_¡c,_¡k) ¸ 273.15ø_¡K

nv(0_¡f,_¡r) ¸ 459.67ø_¡R

: To select temperature units from a
, press:

2 9
¥ À
Title CATALOG

Title titleString, [Lbl]

Creates the title of a pull-down menu or dialog
box when used inside a Toolbar or Custom
construct, or a Dialog...EndDlog block.

Note: Lbl is only valid in the Toolbar construct.
When present, it allows the menu choice to
branch to a specified label inside the program.

Progr

©
:Dia
:Tit
box"
:Req
:Dro
born
se

:End
©

tmpCnv() CATALOG

tmpCnv(expression1_¡tempUnit1, _¡tempUnit2)
⇒ expression _¡tempUnit2

Converts a temperature value specified by
expression1 from one unit to another. Valid
temperature units are:

_¡C Celsius
_¡F Fahrenheit
_¡K Kelvin
_¡R Rankine

For example, 100_¡C converts to 212_¡F:

To convert a temperature range, use @tmpCnv()
instead.

tmpC

tmpC

tmpC

tmpC

Note
menu

@

H

For ¡, press 2 “.
@ For _ , press ¥ .
H For _ , press 2 .

_¡F

_¡C
0 100

21232
254 Appendix A: Functions and Instructions

you can press ¥ c ¤ [D]
 1 5).

(100_¡c,_¡f) ¸
180.ø_¡F

(180_¡f,_¡c) ¸
100.ø_¡C

(100_¡c,_¡k) ¸
100.ø_¡K

(100_¡f,_¡r) ¸
100.ø_¡R

(1_¡c,_¡f) ¸
1.8ø_¡F

 select temperature units from a
ss:

 9
 À

segment:

r
e "Examples"
 "Trig", t
 "Calc", c
 "Stop", Pexit
r

hen run in a program, this segment
menu with three choices that branch
laces in the program.
@tmpCnv() CATALOG

@tmpCnv(expression1_¡tempUnit1, _¡tempUnit2)
⇒ expression _¡tempUnit2

Converts a temperature range (the difference
between two temperature values) specified by
expression1 from one unit to another. Valid
temperature units are:

_¡C Celsius
_¡F Fahrenheit
_¡K Kelvin
_¡R Rankine

1_¡C and 1_¡K have the same magnitude, as do
1_¡F and 1_¡R. However, 1_¡C is 9/5 as large as
1_¡F.

To get @,
(or 2¿

@tmpCnv

@tmpCnv

@tmpCnv

@tmpCnv

@tmpCnv

Note: To
menu, pre

@ 2
H ¥

For example, a 100_¡C range (from 0_¡C to
100_¡C) is equivalent to a 180_¡F range:

To convert a particular temperature value instead
of a range, use tmpCnv().

Toolbar CATALOG

Toolbar
 block
EndTBar

Creates a toolbar menu.

block can be either a single statement or a
sequence of statements separated with the “:”
character. The statements can be either Title or
Item.

Items must have labels. A Title must also have a
label if it does not have an item.

Program

©
:Toolba
: Titl
: Item
: Item
: Item
:EndTba

©

Note: W
creates a
to three p

For ¡, press 2 “.
@ For _ , press ¥ .
H For _ , press 2 .

_¡C
0 100

_¡F
21232

180_¡F

100_¡C
Appendix A: Functions and Instructions 255

am segment:

ewFold(temp)
lse
Already exists
lrErr
Try

: See ClrErr and PassErr.

,2,3,4,5,6}!L1 ¸
{0 1 2 ...}

,3,4,3,4,6}!L2 ¸
{0 2 3 ...}

ar L1,L2 ¸ Done
Stat ¸
Trace CATALOG

Trace

Draws a Smart Graph and places the trace cursor
on the first defined Y= function at the previously
defined cursor position, or at the reset position if
regraphing was necessary.

Allows operation of the cursor and most keys
when editing coordinate values. Several keys,
such as the function keys, O, and 3, are
not activated during trace.

Note: Press ¸ to resume operation.

Try CATALOG

Try
block1

Else
block2

EndTry

Executes block1 unless an error occurs. Program
execution transfers to block2 if an error occurs in
block1. Variable errornum contains the error
number to allow the program to perform error
recovery.

block1 and block2 can be either a single statement
or a series of statements separated with the “:”
character.

Progr

©
:Try
: N
: E
: ¦
: C
:End

©

Note

TwoVar MATH/Statistics menu

TwoVar list1, list2[, [list3] [, list4, list5]]

Calculates the TwoVar statistics and updates all
the system statistics variables.

All the lists must have equal dimensions except
for list5.

list1 represents xlist.
list2 represents ylist.
list3 represents frequency.
list4 represents category codes.
list5 represents category include list.

Note: list1 through list4 must be a variable name
or c1–c99 (columns in the last data variable
shown in the Data/Matrix Editor). list5 does not
have to be a variable name and cannot be c1–c99
.

{0,1

{0,2

TwoV
Show
256 Appendix A: Functions and Instructions

est ¸ 10
 arctest ¸ Done
est ¸ 50
est ¸

v arctest ¸ Done
est ¸ 15

a,b,c]) ¸

ñ +cñ

b
añ +bñ +cñ

c

añ +bñ +cñ
]

1,2,1]) ¸

[
‡6
6

‡6
3

‡6
6]

1;2;3]) ¸









‡14

14
‡14
7

3ø‡14
14

e({a,b,c}) ¸
añ -aø(b+c)+bñ -bøc+cñ

3

e({1,2,5,ë6,3,ë2}) ¸
31/2

e({1,3,5},{4,6,2}) ¸
68/33

e([1,2,5;ë3,0,1;
]) ¸ [4.75 1.03 4]

e([L1.1,2.2;3.4,5.1;
3],[6,3;2,4;5,1]) ¸

[3.91731,2.08411]
Unarchiv CATALOG

Unarchiv var1 [, var2] [, var3] …

Moves the specified variables from the user data
archive memory to RAM.

You can access an archived variable the same as
you would a variable in RAM. However, you
cannot delete, rename, or store to an archived
variable because it is locked automatically.

To archive variables, use Archive.

10!arct
Archive
5ùarct
15!arct

N

Unarchi
15!arct

unitV() MATH/Matrix/Vector ops menu

unitV(vector1) ⇒ vector

Returns either a row- or column-unit vector,
depending on the form of vector1.

vector1 must be either a single-row matrix or a
single-column matrix.

unitV([

[a
añ +b

unitV([

unitV([

Unlock CATALOG

Unlock var1[, var2][, var3]...

Unlocks the specified variables.

Note: The variables can be locked using the
Lock command.

variance() MATH/Statistics menu

variance(list[, freqlist]) ⇒ expression

Returns the variance of list.

Each freqlist element counts the number of
consecutive occurrences of the corresponding
element in list.

Note: list must contain at least two elements.

varianc

varianc

varianc

variance(matrix1[, freqmatrix]) ⇒ matrix

Returns a row vector containing the variance of
each column in matrix1.

Each freqmatrix element counts the number of
consecutive occurrences of the corresponding
element in matrix1.

Note: matrix1 must contain at least two rows.

varianc
.5,.7,3

varianc
L2.3,4.
Appendix A: Functions and Instructions 257

(x<0,x+3)|x=5 ¸
when(x<0,3+x)

raph ¸
h when(x‚ë p and
x+3,undef) ¸

h when(x<0,x+3,5ìx^2) ¸

"

¥"

raph ¸ Done
h when(x<0,when(x<ë p,
n(x),2x+3),5ìx^2) ¸

(n>0,nùfactoral(nì1),1)
toral(n) ¸ Done
oral(3) ¸ 6

6

am segment:

emp
le i<=20
emp+1/i!temp
+1!i
While
p "sum of reciprocals up

20",temp
when() CATALOG

when(condition, trueResult [, falseResult]
[, unknownResult]) ⇒ expression

Returns trueResult, falseResult, or unknownResult,
depending on whether condition is true, false, or
unknown. Returns the input if there are too few
arguments to specify the appropriate result.

Omit both falseResult and unknownResult to make
an expression defined only in the region where
condition is true.

when

Use an undef falseResult to define an expression
that graphs only on an interval.

ClrG
Grap
x<0,

Omit only the unknownResult to define a two-piece
expression.

Grap

Nest when() to define expressions that have
more than two pieces.

@

H

ClrG
Grap
4ùsi

when() is helpful for defining recursive functions. when
!fac
fact
3! ¸

While CATALOG

While condition
 block
EndWhile

Executes the statements in block as long as
condition is true.

block can be either a single statement or a
sequence of statements separated with the “:”
character.

Progr

©
:1!i
:0!t
:Whi
: t
: i
:End
:Dis
to

©

“With” See |, page 277.
258 Appendix A: Functions and Instructions

r true ¸ false

or (3>5) ¸ true

se mode:

 xor 0h3D5F ¸ 0h79169

e mode:

1 xor 0b100 ¸0b100001

binary entry can have up to 32 digits
ting the 0b prefix). A hexadecimal
 have up to 8 digits.

rtant: Zero, not the letter O.
xor MATH/Test menu

Boolean expression1 xor Boolean expression2 ⇒ Boolean
expression

Returns true if Boolean expression1 is true and
Boolean expression2 is false, or vice versa.
Returns false if Boolean expression1 and Boolean
expression2 are both true or both false. Returns a
simplified Boolean expression if either of the
original Boolean expressions cannot be resolved
to true or false.

Note: See or.

true xo

(5>3) x

integer1 xor integer2 ⇒ integer

Compares two real integers bit-by-bit using an
xor operation. Internally, both integers are
converted to signed, 32-bit binary numbers.
When corresponding bits are compared, the result
is 1 if either bit (but not both) is 1; the result is 0
if both bits are 0 or both bits are 1. The returned
value represents the bit results, and is displayed
according to the Base mode.

You can enter the integers in any number base.
For a binary or hexadecimal entry, you must use
the 0b or 0h prefix, respectively. Without a prefix,
integers are treated as decimal (base 10).

If you enter a decimal integer that is too large for
a signed, 32-bit binary form, a symmetric modulo
operation is used to bring the value into the
appropriate range.

Note: See or.

In Hex ba

0h7AC36

In Bin bas

0b10010

Note: A
(not coun
entry can

XorPic CATALOG

XorPic picVar[, row] [, column]

Displays the picture stored in picVar on the current
Graph screen.

Uses xor logic for each pixel. Only those pixel
positions that are exclusive to either the screen or
the picture are turned on. This instruction turns
off pixels that are turned on in both images.

picVar must contain a pic data type.

row and column, if included, specify the pixel
coordinates for the upper left corner of the
picture. Defaults are (0, 0).

Impo
Appendix A: Functions and Instructions 259

s(aùx^2+bùx+c,x) ¸

bñ-4øaøc-+b)
2øa

bñ-4øaøc-b
2øa }

2+bùx+c|x=ans(1)[2] ¸ 0

t(zeros(aù(e^(x)+x)
ign (x)ì1),x)) ¸ {}

t(solve(aù(e^(x)+x)
ign (x)ì1)=0,x)) ¸

ex + x = 0 or x>0 or a = 0

s({x^2+y^2ìr^2,
)^2+y^2ìr^2},{x,y}) ¸







r

2

3ør
2

r
2

ë 3ør
2

ct row 2:

1)[2] ¸ 



r

2

ë 3ør
2

zeros() MATH/Algebra menu

zeros(expression, var) ⇒ list

Returns a list of candidate real values of var that
make expression=0. zeros() does this by
computing exp8list(solve(expression=0,var),var).

zero

{ë(

aùx^

For some purposes, the result form for zeros() is
more convenient than that of solve(). However,
the result form of zeros() cannot express implicit
solutions, solutions that require inequalities, or
solutions that do not involve var.

Note: See also cSolve(), cZeros(), and solve().

exac
(s

exac
(s

zeros({expression1, expression2}, {varOrGuess1,
varOrGuess2 [, …]}) ⇒ matrix

Returns candidate real zeros of the simultaneous
algebraic expressions, where each varOrGuess
specifies an unknown whose value you seek.

Optionally, you can specify an initial guess for a
variable. Each varOrGuess must have the form:

variable
– or –
variable = real or non-real number

For example, x is valid and so is x=3.

If all of the expressions are polynomials and if
you do NOT specify any initial guesses, zeros()
uses the lexical Gröbner/Buchberger elimination
method to attempt to determine all real zeros.

For example, suppose you have a circle of radius r
at the origin and another circle of radius r
centered where the first circle crosses the positive
x-axis. Use zeros() to find the intersections.

As illustrated by r in the example to the right,
simultaneous polynomial expressions can have
extra variables that have no values, but represent
given numeric values that could be substituted
later.

Each row of the resulting matrix represents an
alternate zero, with the components ordered the
same as the varOrGuess list. To extract a row,
index the matrix by [row].

zero
(xìr

Extra

ans(
260 Appendix A: Functions and Instructions

{x^2+y^2ìr^2,
2+y^2ìr^2},{x,y,z})







r

2

3ør
2

 @1

r
2

ë 3ør
2

 @1

{x+e^(z)ùyì1,xìyìsin(z)
}) ¸


ezøsin(z)+1

ez +1

ë(sin(z)ì1)
ez +1

e^(z)ùyì1,ëyìsin(z)},
¸

[].041… 3.183…

{e^(z)ùyì1,ëyìsin(z)},
p}) ¸

[].001… 6.281…

n graphing mode:

cos(x)!y1(x) ¸ Done
:ZoomBox ¸

y after defining ZoomBox by
 the second time.

1st corner
2nd corner
You can also (or instead) include unknowns that
do not appear in the expressions. For example,
you can include z as an unknown to extend the
previous example to two parallel intersecting
cylinders of radius r. The cylinder zeros illustrate
how families of zeros might contain arbitrary
constants in the form @k, where k is an integer
suffix from 1 through 255. The suffix resets to 1
when you use ClrHome or ƒ 8:Clear Home.

zeros(
(xìr)^
¸

For polynomial systems, computation time or
memory exhaustion may depend strongly on the
order in which you list unknowns. If your initial
choice exhausts memory or your patience, try
rearranging the variables in the expressions
and/or varOrGuess list.

If you do not include any guesses and if any
expression is non-polynomial in any variable but
all expressions are linear in the unknowns,
zeros() uses Gaussian elimination to attempt to
determine all real zeros.

zeros(
},{x,y




If a system is neither polynomial in all of its
variables nor linear in its unknowns, zeros()
determines at most one zero using an
approximate iterative method. To do so, the
number of unknowns must equal the number of
expressions, and all other variables in the
expressions must simplify to numbers.

Each unknown starts at its guessed value if there
is one; otherwise, it starts at 0.0.

zeros({
{y,z})

Use guesses to seek additional zeros one by one.
For convergence, a guess may have to be rather
close to a zero.

zeros(
{y,z=2

ZoomBox CATALOG

ZoomBox

Displays the Graph screen, lets you draw a box
that defines a new viewing window, and updates
the window.

In functio

1.25xù
ZoomStd

The displa
pressing ¸
Appendix A: Functions and Instructions 261

ction graphing mode:

,3,4}!L1 ¸ {1 2 3 4}
,4,5}!L2 ¸ {2 3 4 5}
lot 1,1,L1,L2 ¸ Done
Std ¸

"

¥"
Data ¸

ction graphing mode:

xùcos(x)!y1(x) ¸ Done
Std ¸

"

¥"
Dec ¸
ZoomData CATALOG

ZoomData

Adjusts the window settings based on the
currently defined plots (and data) so that all
statistical data points will be sampled, and
displays the Graph screen.

Note: Does not adjust ymin and ymax for
histograms.

In fun

{1,2
{2,3
newP
Zoom

@

H
Zoom

ZoomDec CATALOG

ZoomDec

Adjusts the viewing window so that @x and
@y = 0.1 and displays the Graph screen with the
origin centered on the screen.

In fun

1.25
Zoom

@

H

Zoom
262 Appendix A: Functions and Instructions

n graphing mode:

cos(x)!y1(x) ¸ Done
 ¸

"

 ¸

n graphing mode:

cos(x)!y1(x) ¸ Done
:ZoomIn ¸

n graphing mode:

cos(x)!y1(x) ¸ Done
:ZoomInt ¸
ZoomFit CATALOG

ZoomFit

Displays the Graph screen, and calculates the
necessary window dimensions for the dependent
variables to view all the picture for the current
independent variable settings.

In functio

1.25xù
ZoomStd

@ "
H ¥

ZoomFit

ZoomIn CATALOG

ZoomIn

Displays the Graph screen, lets you set a center
point for a zoom in, and updates the viewing
window.

The magnitude of the zoom is dependent on the
Zoom factors xFact and yFact. In 3D Graph mode,
the magnitude is dependent on xFact, yFact, and
zFact.

In functio

1.25xù
ZoomStd

¸

ZoomInt CATALOG

ZoomInt

Displays the Graph screen, lets you set a center
point for the zoom, and adjusts the window
settings so that each pixel is an integer in all
directions.

In functio

1.25xù
ZoomStd

¸

Appendix A: Functions and Instructions 263

ction graphing mode:

xùcos(x)!y1(x) ¸ Done
Std:ZoomOut ¸

ction graphing mode:

xùcos(x)!y1(x) ¸ Done
Std ¸

Sqr ¸
ZoomOut CATALOG

ZoomOut

Displays the Graph screen, lets you set a center
point for a zoom out, and updates the viewing
window.

The magnitude of the zoom is dependent on the
Zoom factors xFact and yFact. In 3D Graph mode,
the magnitude is dependent on xFact, yFact, and
zFact.

In fun

1.25
Zoom

¸

ZoomPrev CATALOG

ZoomPrev

Displays the Graph screen, and updates the
viewing window with the settings in use before
the last zoom.

ZoomRcl CATALOG

ZoomRcl

Displays the Graph screen, and updates the
viewing window using the settings stored with
the ZoomSto instruction.

ZoomSqr CATALOG

ZoomSqr

Displays the Graph screen, adjusts the x or y
window settings so that each pixel represents an
equal width and height in the coordinate system,
and updates the viewing window.

In 3D Graph mode, ZoomSqr lengthens the
shortest two axes to be the same as the longest
axis.

In fun

1.25
Zoom

"
Zoom
264 Appendix A: Functions and Instructions

n graphing mode:

cos(x)!y1(x) ¸ Done
 ¸

n graphing mode:

cos(x)!y1(x) ¸ Done
 ¸

"

g ¸

56
4 ¸ 60
4 ¸ 64
4 ¸ 68
4 ¸ 72
ZoomStd CATALOG

ZoomStd

Sets the window variables to the following
standard values, and then updates the viewing
window.

Function graphing:
x: [ë 10, 10, 1], y: [ë 10, 10, 1] and xres=2

Parametric graphing:
t: [0, 2p, p/24], x: [ë 10, 10, 1], y:[ë 10, 10, 1]

Polar graphing:
q: [0, 2p, p/24], x: [ë 10, 10, 1], y: [ë 10, 10, 1]

Sequence graphing:
nmin=1, nmax=10, plotStrt=1, plotStep=1,
x: [ë 10, 10, 1], y: [ë 10, 10, 1]

3D graphing:
eyeq°=20, eyef°=70, eyeψ°=0
x: [ë 10, 10, 14], y: [ë 10, 10, 14],
z: [ë 10, 10], ncontour=5

Differential equations graphing:
t: [0, 10, .1, 0], x: [ë 1, 10, 1], y: [ë 10, 10, 1],
ncurves=0, Estep=1, diftol=.001, fldres=14,
dtime=0

In functio

1.25xù
ZoomStd

ZoomSto CATALOG

ZoomSto

Stores the current Window settings in the Zoom
memory. You can use ZoomRcl to restore the
settings.

ZoomTrig CATALOG

ZoomTrig

Displays the Graph screen, sets @x to p/24, and
xscl to p/2, centers the origin, sets the y settings
to [ë 4, 4, .5], and updates the viewing window.

In functio

1.25xù
ZoomStd

@ "

H ¥

ZoomTri

+ (add) «key

expression1 + expression2 ⇒ expression

Returns the sum of expression1 and expression2.

56 ¸
ans(1)+
ans(1)+
ans(1)+
ans(1)+
Appendix A: Functions and Instructions 265

p,p/2}!L1 ¸ {22 p p/2}
5,p/2}!L2 ¸ {10 5 p/2}
2 ¸ {32 p+5 p}

1)+{p,ë5,ë p} ¸
{p+32 p 0}

;c,d]+[1,0;0,1] ¸

[]
a+1 b
c d+1

10,15,20} ¸ {25 30 35}

15,20}+15 ¸ {25 30 35}

1,2;3,4] ¸

[
21 2
3 24]

¸ 4

6 ¸
5ø p

6

p,pà2}ì{10,5,pà2} ¸
{12 pì5 0}

]ì[1,2] ¸ [2 2]

{10,15,20} ¸ {5 0 -5}

15,20}ì15 ¸ {-5 0 5}

[1,2;3,4] ¸

[
19 ë2
ë3 16]

45 ¸ 6.9

x ¸ x2øy
list1 + list2 ⇒ list
matrix1 + matrix2 ⇒ matrix

Returns a list (or matrix) containing the sums of
corresponding elements in list1 and list2 (or
matrix1 and matrix2).

Dimensions of the arguments must be equal.

{22,
{10,
L1+L

ans(

[a,b

expression + list1 ⇒ list
list1 + expression ⇒ list

Returns a list containing the sums of expression
and each element in list1.

15+{

{10,

expression + matrix1 ⇒ matrix
matrix1 + expression ⇒ matrix

Returns a matrix with expression added to each
element on the diagonal of matrix1. matrix1 must
be square.

Note: Use .+ (dot plus) to add an expression to
each element.

20+[

ì (subtract) |key

expression1 - expression2 ⇒ expression

Returns expression1 minus expression2.

6ì2

pì pà

list1 - list2 ⇒ list
matrix1 - matrix2 ⇒ matrix

Subtracts each element in list2 (or matrix2) from
the corresponding element in list1 (or matrix1),
and returns the results.

Dimensions of the arguments must be equal.

{22,

[3,4

expression - list1 ⇒ list
list1 - expression ⇒ list

Subtracts each list1 element from expression or
subtracts expression from each list1 element, and
returns a list of the results.

15ì

{10,

expression - matrix1 ⇒ matrix
matrix1 - expression ⇒ matrix

expression ìmatrix1 returns a matrix of expression
times the identity matrix minus matrix1. matrix1
must be square.

matrix1 ì expression returns a matrix of expression
times the identity matrix subtracted from matrix1.
matrix1 must be square.

Note: Use .. (dot minus) to subtract an
expression from each element.

20ì

ù (multiply) pkey

expression1 ù expression2 ⇒ expression

Returns the product of expression1 and expression2.

2ù3.

xùyù
266 Appendix A: Functions and Instructions

3}ù{4,5,6} ¸{4. 10 18}

2}ù{añ,bà3} ¸{2øa
b
2}

4,5,6]ù[a,d;b,e;c,f]

,6} ¸ {4ø p 5ø p 6ø p}

,4]ù.01 ¸ [
.01 .02
.03 .04]

tity(3) ¸






l 0 0

0 l 0
0 0 l

¸ .57971

x2

3}/{4,5,6} ¸
{.25 2/5 1/2}

,‡(a)} ¸







a
3 1 ‡a

}/(aùbùc) ¸

{
1

bøc
1

aøc
1

aøb}

]/(aùbùc) ¸

[
1

bøc
1

aøc
1

aøb]
list1ù list2 ⇒ list

Returns a list containing the products of the
corresponding elements in list1 and list2.

Dimensions of the lists must be equal.

{1.0,2,

{2àa,3à

matrix1 ùmatrix2 ⇒ matrix

Returns the matrix product of matrix1 and matrix2.

The number of rows in matrix1 must equal the
number of columns in matrix2.

[1,2,3;
¸

expression ù list1 ⇒ list
list1 ù expression ⇒ list

Returns a list containing the products of
expression and each element in list1.

pù{4,5

expression ùmatrix1 ⇒ matrix
matrix1 ù expression ⇒ matrix

Returns a matrix containing the products of
expression and each element in matrix1.

Note: Use .ù (dot multiply) to multiply an
expression by each element.

[1,2;3

lùiden

à (divide) ekey

expression1 à expression2 ⇒ expression

Returns the quotient of expression1 divided by
expression2.

2/3.45

x^3/x ¸

list1 à list2 ⇒ list

Returns a list containing the quotients of list1
divided by list2.

Dimensions of the lists must be equal.

{1.0,2,

expression à list1 ⇒ list
list1 à expression ⇒ list

Returns a list containing the quotients of
expression divided by list1 or list1 divided by
expression.

a/{3,a

{a,b,c

matrix1 à expression ⇒ matrix

Returns a matrix containing the quotients of
matrix1àexpression.

Note: Use . / (dot divide) to divide an expression
by each element.

[a,b,c
Appendix A: Functions and Instructions 267

¸ 16

,c}^{1,b,3} ¸ {a 2b cò}

,2,ë3} ¸ {pa pñ
1
pò}

,3,4}^ë2 ¸
{1 1/4 1/9 1/16}

;3,4]^2 ¸
;3,4]^ë1 ¸
;3,4]^ë2 ¸

;b,3].+[c,4;5,d] ¸
c,4;5,d] ¸

;b,3].ì[c,4;d,5] ¸
c,4;d,5] ¸
^ (power) Zkey

expression1 ^ expression2 ⇒ expression
list1 ^ list2 ⇒ list

Returns the first argument raised to the power of
the second argument.

For a list, returns the elements in list1 raised to
the power of the corresponding elements in list2.

In the real domain, fractional powers that have
reduced exponents with odd denominators use
the real branch versus the principal branch for
complex mode.

4^2

{a,2

expression ^ list1 ⇒ list

Returns expression raised to the power of the
elements in list1.

p^{a

list1 ^ expression ⇒ list

Returns the elements in list1 raised to the power
of expression.

{1,2

squareMatrix1 ^ integer ⇒ matrix

Returns squareMatrix1 raised to the integer power.

squareMatrix1 must be a square matrix.

If integer = ë 1, computes the inverse matrix.
If integer < ë 1, computes the inverse matrix to an
appropriate positive power.

[1,2
[1,2
[1,2

.+ (dot add) ¶«keys

matrix1 .+ matrix2 ⇒ matrix
expression .+ matrix1 ⇒ matrix

matrix1 .+ matrix2 returns a matrix that is the sum
of each pair of corresponding elements in matrix1
and matrix2.

expression .+ matrix1 returns a matrix that is the
sum of expression and each element in matrix1.

[a,2
x.+[

.. (dot subt.) ¶|keys

matrix1 .ì matrix2 ⇒ matrix
expression .ìmatrix1 ⇒ matrix

matrix1 .ìmatrix2 returns a matrix that is the
difference between each pair of corresponding
elements in matrix1 and matrix2.

expression .ìmatrix1 returns a matrix that is the
difference of expression and each element in
matrix1.

[a,2
x.ì[
268 Appendix A: Functions and Instructions

3].ù[c,4;5,d] ¸

b;c,d] ¸

3]./[c,4;5,d] ¸
;5,d] ¸

3].^[c,4;5,d] ¸

;5,d] ¸

ë2.43

.4,1.2í19} ¸
{1 ë.4 ë1.2í19}

¸ aøb

e mode:

1 4dec ¸ 37

101 ¸
111111111111111111111011011

4dec ¸ ë37

 type 4, press 2 .

.13

 100}% ¥¸
{.01 .1 1.}

rtant: Zero, not the letter O.
.ù (dot mult.) ¶pkeys

matrix1 .ùmatrix2 ⇒ matrix
expression .ùmatrix1 ⇒ matrix

matrix1 . ùmatrix2 returns a matrix that is the
product of each pair of corresponding elements in
matrix1 and matrix2.

expression . ùmatrix1 returns a matrix containing
the products of expression and each element in
matrix1.

[a,2;b,

x.ù[a,

. / (dot divide) ¶ekeys

matrix1 . / matrix2 ⇒ matrix
expression . / matrix1 ⇒ matrix

matrix1 . / matrix2 returns a matrix that is the
quotient of each pair of corresponding elements
in matrix1 and matrix2.

expression . / matrix1 returns a matrix that is the
quotient of expression and each element in matrix1.

[a,2;b,
x./[c,4

.^ (dot power) ¶Zkeys

matrix1 .^ matrix2 ⇒ matrix
expression . ^ matrix1 ⇒ matrix

matrix1 .^ matrix2 returns a matrix where each
element in matrix2 is the exponent for the
corresponding element in matrix1.

expression . ^ matrix1 returns a matrix where each
element in matrix1 is the exponent for expression.

[a,2;b,

x.^[c,4

ë (negate) ·key and MATH/Base menu

ëexpression1 ⇒ expression
ë list1 ⇒ list
ë matrix1 ⇒ matrix

Returns the negation of the argument.

For a list or matrix, returns all the elements
negated.

If expression1 is a binary or hexadecimal integer,
the negation gives the two’s complement.

ë2.43 ¸

ë{ë1,0

ëaùëb

In Bin bas

0b10010

ë0b100
0b11111

ans(1)

Note: To

% (percent) CHAR/Punctuation menu

expression1 % ⇒ expression
list1 % ⇒ list
matrix1 % ⇒ matrix

Returns
argument

100
.

For a list or matrix, returns a list or matrix with
each element divided by 100.

13% ¥¸

{1, 10,

Impo
Appendix A: Functions and Instructions 269

ple function listing using math test
ols: =, ƒ, <, , >, ‚

)
c
x ë5 Then
eturn 5
lseIf x>ë5 and x<0 Then
eturn ëx
lseIf x‚0 and xƒ10 Then
eturn x
lseIf x=10 Then
eturn 3
If
Func

h g(x) ¸

=" (equal) example.

=" (equal) example.
= (equal) Ákey

expression1 = expression2 ⇒ Boolean expression
list1 = list2 ⇒ Boolean list
matrix1 = matrix2 ⇒ Boolean matrix

Returns true if expression1 is determined to be
equal to expression2.

Returns false if expression1 is determined to not be
equal to expression2.

Anything else returns a simplified form of the
equation.

For lists and matrices, returns comparisons
element by element.

Exam
symb

:g(x
:Fun
:If
: R
: E
: R
: E
: R
: E
: R
:End
:End

Grap

≠ ¥ Á key

expression1 ≠ expression2 ⇒ Boolean expression
list1 ≠ list2 ⇒ Boolean list
matrix1 ≠ matrix2 ⇒ Boolean matrix

Returns true if expression1 is determined to be not
equal to expression2.

Returns false if expression1 is determined to be
equal to expression2.

Anything else returns a simplified form of the
equation.

For lists and matrices, returns comparisons
element by element.

See "

< 2Âkey

expression1 < expression2 ⇒ Boolean expression
list1 < list2 ⇒ Boolean list
matrix1 < matrix2 ⇒ Boolean matrix

Returns true if expression1 is determined to be
less than expression2.

Returns false if expression1 is determined to be
greater than or equal to expression2.

Anything else returns a simplified form of the
equation.

For lists and matrices, returns comparisons
element by element.

See "
270 Appendix A: Functions and Instructions

equal) example.

equal) example.

equal) example.

120

! ¸ {120 24 6}

4]! ¸ [
1 2
6 24]
≤ ¹µkey

expression1 ≤ expression2 ⇒ Boolean expression
list1 ≤ list2 ⇒ Boolean list
matrix1 ≤ matrix2 ⇒ Boolean matrix

Returns true if expression1 is determined to be
less than or equal to expression2.

Returns false if expression1 is determined to be
greater than expression2.

Anything else returns a simplified form of the
equation.

For lists and matrices, returns comparisons
element by element.

See "=" (

> 2Ãkey

expression1 > expression2 ⇒ Boolean expression
list1 > list2 ⇒ Boolean list
matrix1 > matrix2 ⇒ Boolean matrix

Returns true if expression1 is determined to be
greater than expression2.

Returns false if expression1 is determined to be
less than or equal to expression2.

Anything else returns a simplified form of the
equation.

For lists and matrices, returns comparisons
element by element.

See "=" (

≥ ¹¶key

expression1 ≥ expression2 ⇒ Boolean expression
list1 ≥ list2 ⇒ Boolean list
matrix1 ≥ matrix2 ⇒ Boolean matrix

Returns true if expression1 is determined to be
greater than or equal to expression2.

Returns false if expression1 is determined to be
less than expression2.

Anything else returns a simplified form of the
equation.

For lists and matrices, returns comparisons
element by element.

See "=" (

! (factorial) @ ¥ e key H 2 W key

expression1! ⇒ expression
list1! ⇒ list
matrix1! ⇒ matrix

Returns the factorial of the argument.

For a list or matrix, returns a list or matrix of
factorials of the elements.

The TI-89 computes a numeric value for only non-
negative whole-number values.

5! ¸

{5,4,3}

[1,2;3,
Appendix A: Functions and Instructions 271

lo " & "Nick" ¸
"Hello Nick"

2,x,a,b) ¸
bò
3 -

aò
3

2,x) ¸
xò
3

x^2,x,c) ¸
aøxò
3 + c

(2ìcos(x)),x)!tmp(x) ¸
raph:Graph tmp(x):Graph
(2ìcos(x)):Graph ‡(3)
tanê(‡(3)(tan(x/2)))/3)

e^(ëx^2)+a/(x^2+a^2),x)

ëx^2),x,ë1,1)¥¸ 1.493...

n(x+y),y,0,x),x,0,a) ¸
& (append) @ ¥ p key H 2 H key

string1 & string2 ⇒ string

Returns a text string that is string2 appended to
string1.

"Hel

‰() (integrate) 2<key

‰(expression1, var[, lower] [,upper]) ⇒ expression
‰(list1,var [,order]) ⇒ list
‰(matrix1,var [,order]) ⇒ matrix

Returns the integral of expression1 with respect to
the variable var from lower to upper. ‰(x^

Returns an anti-derivative if lower and upper are
omitted. A symbolic constant of integration such
as C is omitted.

However, lower is added as a constant of
integration if only upper is omitted.

‰(x^

‰(aù

Equally valid anti-derivatives might differ by a
numeric constant. Such a constant might be
disguised—particularly when an anti-derivative
contains logarithms or inverse trigonometric
functions. Moreover, piecewise constant
expressions are sometimes added to make an
anti-derivative valid over a larger interval than
the usual formula.

‰(1/
ClrG
1/
(2
¸

‰() returns itself for pieces of expression1 that it
cannot determine as an explicit finite
combination of its built-in functions and
operators.

When lower and upper are both present, an
attempt is made to locate any discontinuities or
discontinuous derivatives in the interval lower <
var < upper and to subdivide the interval at those
places.

‰(bù
¸

For the AUTO setting of the Exact/Approx mode,
numerical integration is used where applicable
when an anti-derivative or a limit cannot be
determined.

For the APPROX setting, numerical integration is
tried first, if applicable. Anti-derivatives are
sought only where such numerical integration is
inapplicable or fails.

‰(e^(

‰() can be nested to do multiple integrals.
Integration limits can depend on integration
variables outside them.

Note: See also nInt().

‰(‰(l
272 Appendix A: Functions and Instructions

2

,4}) ¸ {3 ‡a 2}

n,1,5) ¸
1

120

k,1,n) ¸ (n!)ñ

,n,2},n,1,5) ¸

{ 1
120 120 32}

4,3) ¸ 1

k,4,1) ¸ 6

k,4,1)ù Π(1/k,k,2,4) ¸
1/4

,1,5) ¸
137
60

,1,n) ¸

nø(n + 1)ø(2øn + 1)
6

,n,1,ˆ) ¸
pñ

6

,3) ¸ 0

,1) ¸ ë5

,1)+G(k,k,2,4) ¸ 4

segment:

t "Enter Your
tr1
d #str1

1,5,1
raph
h iùx
ic #("pic" & string(i))
‡() (square root) 2]key

‡ (expression1) ⇒ expression
‡ (list1) ⇒ list

Returns the square root of the argument.

For a list, returns the square roots of all the
elements in list1.

‡(4) ¸

‡({9,a

Π() (product) MATH/Calculus menu

Π(expression1, var, low, high) ⇒ expression

Evaluates expression1 for each value of var from
low to high, and returns the product of the results.

Π(1/n,

Π(k^2,

Π({1/n

Π(expression1, var, low, lowì 1) ⇒ 1 Π(k,k,

Π(expression1, var, low, high) ⇒ 1/Π(expression1,
 var, high+1, lowì 1) if high < lowì 1

Π(1/k,

Π(1/k,

G() (sum) MATH/Calculus menu

G (expression1, var, low, high) ⇒ expression

Evaluates expression1 for each value of var from
low to high, and returns the sum of the results.

G(1/n,n

G(k^2,k

G(1/n^2

G (expression1, var, low, lowì 1) ⇒ 0 G(k,k,4

G (expression1, var, low, high) ⇒ ë G (expression1,
var, high+1, lowì 1) if high < lowì 1

G(k,k,4

G(k,k,4

(indirection) CATALOG

varNameString

Refers to the variable whose name is
varNameString. This lets you create and modify
variables from a program using strings.

Program

©
:Reques
Name",s
:NewFol

©

©
:For i,
: ClrG
: Grap
: StoP
:EndFor

©

Appendix A: Functions and Instructions 273

gree or Radian angle mode:

(p/4)ô) ¸
‡2
2

{0ô,(p/12)ô,ë pô}) ¸

{1
(3+1)ø 2

4 ë1}

dian angle mode:

45¡) ¸
‡2
2

{0,p/4,90¡,30.12¡}) ¥¸

{1 .707... 0 .864...}

60¡, 45¡] ¸

dian mode and vector format set to:

dian angle mode and Rectangular
lex format mode:

ì(10 p/4) ¸
5ì5ø 2+(3ì5ø 2)øi
ë2.071…ì4.071…øi

rectangular

cylindrical

spherical
ô (radian) MATH/Angle menu

expression1ô ⇒ expression
list1ô ⇒ list
matrix1ô ⇒ matrix

In Degree angle mode, multiplies expression1 by
180/p. In Radian angle mode, returns expression1
unchanged.

This function gives you a way to use a radian
angle while in Degree mode. (In Degree angle
mode, sin(), cos(), tan(), and polar-to-
rectangular conversions expect the angle
argument to be in degrees.)

Hint: Use ô if you want to force radians in a
function or program definition regardless of the
mode that prevails when the function or program
is used.

In De

cos(

cos(

¡ (degree) 2“ key

expression¡ ⇒ value
list1¡ ⇒ list
matrix1¡ ⇒ matrix

In Radian angle mode, multiplies expression by
p/180. In Degree angle mode, returns expression
unchanged.

This function gives you a way to use a degree
angle while in Radian mode. (In Radian angle
mode, sin(), cos(), tan(), and polar-to-
rectangular conversions expect the angle
argument to be in radians.)

In Ra

cos(

cos(

 (angle) 2’ key

[radius, q_angle] ⇒ vector (polar input)
[radius, q_angle,Z_coordinate] ⇒ vector

(cylindrical input)
[radius, q_angle, f_angle] ⇒ vector

(spherical input)

Returns coordinates as a vector depending on the
Vector Format mode setting: rectangular,
cylindrical, or spherical.

[5,

In Ra

(magnitude angle) ⇒ complexValue (polar input)

Enters a complex value in (r q) polar form. The
angle is interpreted according to the current Angle
mode setting.

In Ra
comp

5+3i

¥¸
274 Appendix A: Functions and Instructions

 angle mode:

7.5" ¸ 25.221...

¸ 51/2

(y''=y^(ë1/2) and
and y'(0)=0,t,y) ¸

2øy3/4

3
 =t

¸ 9.842…ø_ft

pe 4, press 2 .

is undefined:

¸ z
 ¸ real(z_)

¸ 0
 ¸ imag(z_)
¡, ', " 2“ key (¡), 2È key ('), 2É key (")

dd¡mm'ss.ss" ⇒ expression

dd A positive or negative number
mm A non-negative number
ss.ss A non-negative number

Returns dd+(mm/60)+(ss.ss/3600).

This base-60 entry format lets you:

• Enter an angle in degrees/minutes/seconds
without regard to the current angle mode.

• Enter time as hours/minutes/seconds.

In Degree

25°13'1

25°30'

' (prime) 2È key

variable '
variable ''

Enters a prime symbol in a differential equation.
A single prime symbol denotes a 1st-order
differential equation, two prime symbols denote a
2nd-order, etc.

deSolve
y(0)=0

_ (underscore) @ ¥ key H 2 key

expression_unit

Designates the units for an expression. All unit
names must begin with an underscore.

You can use pre-defined units or create your
own units. For a list of pre-defined units, refer
to the module about constants and
measurement units. You can press:
@ 2 9
H ¥À
to select units from a menu, or you can type
the unit names directly.

3_m 4 _ft

Note: To ty

variable_

When variable has no value, it is treated as
though it represents a complex number. By
default, without the _ , the variable is treated
as real.

If variable has a value, the _ is ignored and
variable retains its original data type.

Note: You can store a complex number to a
variable without using _ . However, for best
results in calculations such as cSolve() and
cZeros(), the _ is recommended.

Assuming z

real(z)
real(z_)

imag(z)
imag(z_)
Appendix A: Functions and Instructions 275

 _ft ¸ 9.842…ø_ft

1.5) ¸ 31.622...

0,ë2,2,a} ¸

{1
1

100 100 10
a}

[1,5,3;4,2,1;6,L2,1]) ¸


43…E7 8.171…E6 6.675…E6

56…E6 7.115…E6 5.813…E6
52…E6 5.469…E6 4.468…E6

ë1 ¸ .322581

,ë.1,xì2}^ë1 ¸

{
1
a

1
4 ë10.

1
xì2}

;3,4]^ë1 ¸
;a,4]^ë1 ¸
4 (convert) 2 key

expression_unit1 4 _unit2 ⇒ expression_unit2

Converts an expression from one unit to another.
The units must be in the same category.

The _ underscore character designates the units.
For a list of valid pre-defined units, refer to the
module about constants and measurement units.
You can press:
@ 2 9
H ¥À to select units from a menu, or
you can type the unit names directly.

To get the _ underscore when typing units
directly, press:
@ ¥
H 2

Note: The 4 conversion operator does not handle
temperature units. Use tmpCnv() and
@tmpCnv() instead.

3_m 4

10^() CATALOG

10^ (expression1) ⇒ expression
10^ (list1) ⇒ list

Returns 10 raised to the power of the argument.

For a list, returns 10 raised to the power of the
elements in list1.

10^(

10^{

10^(squareMatrix1) ⇒ squareMatrix

Returns 10 raised to the power of squareMatrix1.
This is not the same as calculating 10 raised to
the power of each element. For information about
the calculation method, refer to cos().

squareMatrix1 must be diagonalizable. The result
always contains floating-point numbers.

10^(


1.19.9
7.6

xê CATALOG (^-1)

expression1 xê ⇒ expression
list1 xê ⇒ list

Returns the reciprocal of the argument.

For a list, returns the reciprocals of the elements
in list1.

3.1^

{a,4

squareMatrix1 xê ⇒ squareMatrix

Returns the inverse of squareMatrix1.

squareMatrix1 must be a non-singular square
matrix.

[1,2
[1,2
276 Appendix A: Functions and Instructions

3 ¸ 4

sin(y) ¸ sin(y) + y

n(y)=x ¸ x + y

+7!f(x) ¸ Done

=‡(3) ¸ ‡3 + 7

)^2+2sin(x)ì6| sin(x)=d

dñ+2dì6

^2ì1=0,x)|x>0 and x<2

x = 1

(1/x)|x>0 ¸ 1

(1/x) ¸
1
x ø x

^2ì1=0,x)| xƒ1 ¸x = ë1

var ¸
p
4

!Y1(x) ¸ Done

4}!Lst5 ¸ {1 2 3 4}

4,5,6]!MatG ¸ [
1 2 3
4 5 6]

!str1 ¸ "Hello"
| (“with”) @ Í key H 2 Í key

expression | Boolean expression1 [and Boolean
expression2]...[and Boolean expressionN]

The “with” (|) symbol serves as a binary operator.
The operand to the left of | is an expression. The
operand to the right of | specifies one or more
relations that are intended to affect the
simplification of the expression. Multiple relations
after | must be joined by a logical “and”.

The “with” operator provides three basic types of
functionality: substitutions, interval constraints,
and exclusions.

x+1| x=

x+y| x=

x+y| si

Substitutions are in the form of an equality, such
as x=3 or y=sin(x). To be most effective, the left
side should be a simple variable. expression |
variable = value will substitute value for every
occurrence of variable in expression.

x^3ì2x

f(x)| x

(sin(x)
¸

Interval constraints take the form of one or more
inequalities joined by logical “and” operators.
Interval constraints also permit simplification that
otherwise might be invalid or not computable.

solve(x
¸

‡(x)ù‡

‡(x)ù‡

Exclusions use the “not equals” (/= or ƒ)
relational operator to exclude a specific value
from consideration. They are used primarily to
exclude an exact solution when using cSolve(),
cZeros(), fMax(), fMin(), solve(), zeros(), etc.

solve(x

! (store) §key

expression ! var
list ! var
matrix ! var
expression ! fun_name(parameter1,...)
list ! fun_name(parameter1,...)
matrix ! fun_name(parameter1,...)

If variable var does not exist, creates var and
initializes it to expression, list, or matrix.

If var already exists and if it is not locked or
protected, replaces its contents with expression,
list, or matrix.

Hint: If you plan to do symbolic computations
using undefined variables, avoid storing anything
into commonly used, one-letter variables such as
a, b, c, x, y, z, etc.

p/4!my

2cos(x)

{1,2,3,

[1,2,3;

"Hello"
Appendix A: Functions and Instructions 277

am segment:

et 10 points from the Graph

creen
 i,1,10 ¦ This loops 10
s

se mode:

hF+10 ¸ 27

se mode:

hF+10 ¸ 0b11011

se mode:

hF+10 ¸ 0h1B
¦ (comment) Program Editor/Control menu or

@ ¥ d key
H 2 X key

¦ [text]

¦ processes text as a comment line, which can be
used to annotate program instructions.

¦ can be at the beginning or anywhere in the
line. Everything to the right of ¦, to the end of
the line, is the comment.

Progr

©
:¦ G

s
:For
time

©

0b, 0h @ µ j [B] keys H µ B keys

@ µ j [H] keys H µ H keys

0b binaryNumber
0h hexadecimalNumber

Denotes a binary or hexadecimal number,
respectively. To enter a binary or hex number,
you must enter the 0b or 0h prefix regardless
of the Base mode. Without a prefix, a number
is treated as decimal (base 10).

Results are displayed according to the Base
mode.

In Dec ba

0b10+0

In Bin ba

0b10+0

In Hex ba

0b10+0
278 Appendix A: Functions and Instructions

B

Appendix B:
General Information

Texas Instruments Support and Service

For general information

For technical support

For product (hardware) service
Customers in the U.S., Canada, Mexico, Puerto Rico and Virgin
Islands: Always contact Texas Instruments Customer Support before
returning a product for service.

All other customers: Refer to the leaflet enclosed with this product
(hardware) or contact your local Texas Instruments
retailer/distributor.

Home Page: education.ti.com

KnowledgeBase
and e-mail
inquires:

education.ti.com/support

Phone: (800) TI-CARES; (800) 842-2737
For U.S., Canada, Mexico, Puerto Rico, and
Virgin Islands only

International
information:

education.ti.com/international

KnowledgeBase
and support by
e-mail:

education.ti.com/support

Phone
(not toll-free): (972) 917-8324
Appendix B: General Information 279

http://education.ti.com
http://education.ti.com
http://education.ti.com
http://support.education.ti.com/srvs
http://education.ti.com/support
http://education.ti.com/support
http://education.ti.com/international
http://education.ti.com/support

Texas Instruments (TI) Warranty Information

Customers in the U.S. and Canada Only

One-Year Limited Warranty for Commercial Electronic Product

This Texas Instruments (“TI”) electronic product warranty extends only to the
original purchaser and user of the product.
Warranty Duration. This TI electronic product is warranted to the original pur-
chaser for a period of one (1) year from the original purchase date.
Warranty Coverage. This TI electronic product is warranted against defec-
tive materials and construction. THIS WARRANTY IS VOID IF THE PRODUCT
HAS BEEN DAMAGED BY ACCIDENT OR UNREASONABLE USE, NEGLECT,
IMPROPER SERVICE, OR OTHER CAUSES NOT ARISING OUT OF DEFECTS
IN MATERIALS OR CONSTRUCTION.

Warranty Disclaimers. ANY IMPLIED WARRANTIES ARISING OUT OF THIS
SALE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO THE ABOVE ONE-YEAR PERIOD. TEXAS
INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF THE PROD-
UCT OR OTHER INCIDENTAL OR CONSEQUENTIAL COSTS, EXPENSES,
OR DAMAGES INCURRED BY THE CONSUMER OR ANY OTHER USER.

Some states/provinces do not allow the exclusion or limitation of implied war-
ranties or consequential damages, so the above limitations or exclusions
may not apply to you.
Legal Remedies. This warranty gives you specific legal rights, and you may
also have other rights that vary from state to state or province to province.
Warranty Performance. During the above one (1) year warranty period, your
defective product will be either repaired or replaced with a reconditioned
model of an equivalent quality (at TI’s option) when the product is returned,
postage prepaid, to Texas Instruments Service Facility. The warranty of the
repaired or replacement unit will continue for the warranty of the original unit
or six (6) months, whichever is longer. Other than the postage requirement,
no charge will be made for such repair and/or replacement. TI strongly rec-
ommends that you insure the product for value prior to mailing.
Software. Software is licensed, not sold. TI and its licensors do not warrant
that the software will be free from errors or meet your specific requirements.
All software is provided “AS IS.”
Copyright. The software and any documentation supplied with this product
are protected by copyright.
280 Appendix B: General Information

Australia & New Zealand Customers only

One-Year Limited Warranty for Commercial Electronic Product

This Texas Instruments electronic product warranty extends only to
the original purchaser and user of the product.
Warranty Duration. This Texas Instruments electronic product is
warranted to the original purchaser for a period of one (1) year from
the original purchase date.
Warranty Coverage. This Texas Instruments electronic product is
warranted against defective materials and construction. This war-
ranty is void if the product has been damaged by accident or unrea-
sonable use, neglect, improper service, or other causes not arising
out of defects in materials or construction.
Warranty Disclaimers. Any implied warranties arising out of
this sale, including but not limited to the implied warranties of
merchantability and fitness for a particular purpose, are limited
in duration to the above one-year period. Texas Instruments
shall not be liable for loss of use of the product or other inci-
dental or consequential costs, expenses, or damages incurred
by the consumer or any other user.
Except as expressly provided in the One-Year Limited Warranty
for this product, Texas Instruments does not promise that facil-
ities for the repair of this product or parts for the repair of this
product will be available.
Some jurisdictions do not allow the exclusion or limitation of implied
warranties or consequential damages, so the above limitations or
exclusions may not apply to you.
Legal Remedies. This warranty gives you specific legal rights, and
you may also have other rights that vary from jurisdiction to jurisdic-
tion.
Warranty Performance. During the above one (1) year warranty
period, your defective product will be either repaired or replaced with
a new or reconditioned model of an equivalent quality (at TI’s option)
when the product is returned to the original point of purchase. The
repaired or replacement unit will continue for the warranty of the
original unit or six (6) months, whichever is longer. Other than your
cost to return the product, no charge will be made for such repair
and/or replacement. TI strongly recommends that you insure the
product for value if you mail it.
Software. Software is licensed, not sold. TI and its licensors do not
warrant that the software will be free from errors or meet your spe-
cific requirements. All software is provided “AS IS.”
Copyright. The software and any documentation supplied with this
product are protected by copyright.
Appendix B: General Information 281

All Other Customers
For information about the length and terms of the warranty, refer to
your package and/or to the warranty statement enclosed with this
product, or contact your local Texas Instruments retailer/distributor.
282

Index
Symbols
(!, factorial 47, 271
(!, store 277
(", second notation 275
(#, /=, not equal 270
(#, indirection 273
($(), square root 273
(%, percent 269
(&, append 272
(', minute notation 275
(', prime 275
()(), sum 273
(*(), integrate 50, 272
(*, multiply 266
(+, add 265
(,–- (function keys)

moving among toolbar menus 33
selecting categories 16, 18
selecting menus 29
uses 7

(-, degree notation 104, 274, 275
(-, negate 269
(–, subtract 266
(,, angle 274
(.*, dot multiplication 269
(.+, dot addition 268
(.–, dot subtraction 268
(./, dot division 269
(.^, dot power 269
(/, divide 267
(<, less than 270
(=, equal 270
(>, greater than 271
(? (negation key) 7
(@list(), list difference 202
(@tmpCnv(), temperature-range

conversion 255
(^, power 268
(_, underscore 275
({, <=, less than or equal 271
(| (subtraction key) 7
(|, >=, greater than or equal 271
(|, comment 278
(|, with 50, 277
(0 / (8 . (delete character) 9

(1 (hand modifier key)
status 22

(2 (second modifier key)
description 6
status 22

(2 ; (MEMORY) 9
(2 ^ (exponent key) 7
(2 4 (measurement conversions) 9
(2 6 (recall) 9
(2 E (Catalog)

commands 13
description 12
exiting 14
key command 9

(2 F (Custom)
description 34
example 34
key command 9

(2 G (Character)
description 30
entering special characters 5
key command 9
selecting characters 5

(2 K
calculator Home screen 14
entering commands 13
exiting the split-screen mode 40
key command 9
turning off the calculator 3

(4, convert 276
(4Bin, display as binary 157
(4Cylind, display as cylindrical vector

170
(4DD, display as decimal angle 172
(4Dec, display as decimal integer 173
(4DMS, display as degree/minute/

second 178
(4Hex, display as hexadecimal 196
(4Polar, display as polar vector 219
(4Rect, display as rectangular vector

228
(4Sphere, display as spherical vector

246
(7 (shift modifier key)

description 6
Index 283

status 22
(8 (diamond modifier key)

description 6
status 22

(8 S (SAVE COPY AS)
example 33

(9 (store) key 9
(ABCD (cursor keys)

entering commands 13
opening Apps 16
selecting entry/answer pairs 15
using the CHAR menu 5

(Π(), product 273
(R, radian 274
(T, transpose 250
(x/, reciprocal 276

Numerics
0b, binary indicator 278
0h, hexadecimal indicator 278
10^(), power of ten 276
3D (three-dimensional) mode 23
3D graphing

animation 61
CONTOUR LEVELS 63
HIDDEN SURFACE 63
WIRE AND CONTOUR 63
WIRE FRAME 63

A
ABOUT screen 40
abs(), absolute value 106, 154
absolute value, abs() 106
accent marks

CHAR menu 9
add, + 265
algebra operations 150
All category 18
and (Boolean), and 154
AndPic, and picture 155
angle mode 10

status 22
angle(), angle 155
angle, , 274
ans(), last answer 156

APD (Automatic Power Down)
feature
during calculation or program 4
turning on after 3

append, & 272
APPLICATIONS menu (O) 30, 35
approx(), approximate 156
Apps (calculator software

applications)
deleting 41
icon highlighted, last open 3
icons 2
names 16
opening 16, 35
preinstalled v
shortcuts 19
switching 39

Apps desktop
calculator Home screen and 14
categories 16, 19
clock 24
date and time 25
initial startup 1, 2
mode 10, 23
parts of 3
split-screen status 22
turning off 23
turning off the calculator 3

arccosine, cos/() 163
archive variables, Archive 143, 144
Archive, archive variables 143, 156
archiving variables 86
arcLen(), arc length 156
arcsine, sin/() 241
arctangent, tan/(), arctangent 251
assembly language 183
augment(), augment/concatenate

92, 156
augment/concatenate, augment()

92
AUTO mode status 22
Automatic Power Down (APD)

feature
during calculation or program 4
in OS download mode 44
turning on after 3

auto-paste 15
avgRC(), average rate of change 157
284 Index

B
backspace (0) 9
Base mode 10
batteries

precautions 44
prolonging life 3
replacing 1, 43

binary
display, 4Bin 157
indicator, 0b 278

BldData, build data 158
Boolean

and, and 154
exclusive or, xor 259
not, not 213

build
data, BldData 158
table, Table 250

BUSY 23
Busy/Pause status 23

C
cables 40, 42, 115, 124, 127
calculator Home screen

2 K 9
changing entry/answer pairs 16
custom menu 34
entering commands 13
function keys 7
key command 9
toolbar menus 29
turning off the calculator 3

calculator software applications
(Apps) 3
icons 2
preinstalled v

Calculator-Based Laboratory system
connecting 42

Calculator-Based Ranger system
connecting 42

calculus operations 150
Catalog (2 E)

commands 13
description 12
exiting 14
key command 9

categories
All 18
Apps desktop 19
customizing 19
English 18
example of editing 20
Graphing 18
Math 18
Organizr (organizer) 19
Science 19
selecting 18
selecting empty 19
SocialSt (social studies) 18

CBL
get/return, Get 190
send list variable, Send 233

CBL 2 system
activity 102
connecting 42
programs 102

CBR
get/return, Get 190
send list variable, Send 233

CBR system
connecting 42
programs 102

ceiling(), ceiling 158
ceiling, ceiling() 94
certificate 119, 123, 124, 125, 126,

127
cFactor(), complex factor 110, 158
CHAR menu (2 G)

description 30
entering special characters 5
key command 9

char(), character string 159
characters

deleting 9
Greek 5, 9, 30
international/accented 5, 9, 30
math 5, 9, 30
punctuation 30
special 5, 9, 30
uppercase 6

checkTmr(), check timer 159
circle

graphing 53, 55
Circle, draw circle 159
Index 285

Clock
dialog box 24
operation 24
turning off 28
turning on 29

ClockOff, turning clock off 160
ClockOn, turning clock on 160
ClrDraw, clear drawing 160
ClrErr, clear error 160
ClrGraph, clear graph 160
ClrHome, clear home 16, 161
ClrIO, clear

I/O 161
ClrIO, clear I/O 161
colDim(), matrix column dimension

161
colNorm(), matrix column norm 161
combinations, nCr() 210
comDenom(), common

denominator 161
command scripts

activity 96
commands

Flash Apps 12
Key v, 5, 6

comment, | 278
complex

factor, cFactor() 110, 158
numbers 47, 48
solve, cSolve() 166
zeros, cZeros() 170

complex format mode 10
conj(), complex conjugate 162
connecting

TI ViewScreen overhead panel 42
TI-Presenter video adapter 42

Constant Memory feature 10
contact information 279
contour-level graphing 63
contrast

adjusting 1, 43
initial startup 1

convert measurements 9
convert time, timeCnv() 253
convert, 4 276
copy variable, CopyVar 140
CopyVar, copy variable 140, 162
cos(), cosine 163

cos/(), arccosine 163
cosh(), hyperbolic cosine 164
cosh/(), hyperbolic arccosine 164
cot(), cotangent 164
cot/(), inverse cotangent 165
coth(), hyperbolic cotangent 165
coth/(), inverse hyperbolic

cotangent 165
crossP(), cross product 165
csc(), cosecant 165
csc/(), inverse cosecant 166
csch(), hyperbolic cosecant 166
csch/(),inverse hyperbolic cosecant

166
cSolve(), complex solve 166
CubicReg, cubic regression 168
cumSum(), cumulative sum 168
Current folder status 22
Current mode 10
cursor

deleting characters 9
in the history area 15
location following APD 3
Selecting a command 13
Viewing entries 15

cursor keys (ABCD)
entering commands 13
opening Apps 16
selecting entry/answer pairs 15
using the CHAR menu 5

CustmOff, custom toolbar off 169
CustmOn, custom toolbar on 169
CUSTOM (2 F) menu 34

descripton 34
key command 9

custom toolbar See toolbar
Custom, define toolbar 169
customer support and service 279
cycle picture, CyclePic 170
Cycle, cycle 169
CyclePic, cycle picture 170
cylindrical vector display, 4Cylind 170
cZeros(), complex zeros 170

D
d(), first derivative 50, 172
data (new), NewData 210
286 Index

data filtering 99
data plots 71
Data/Matrix Editor

shift, shift() 239
date

reset 29
setting 24

dayOfWk(), day of week 172
DE (differential equation) mode 23
decimal

angle display, 4DD 172
integer display, 4Dec 173

define toolbar, Toolbar 255
Define, define 89, 173
define, Define 89, 173
DEG (degree) mode 22
degree notation, - 104, 274, 275
degree/minute/second display, 4DMS

178
delete character (0 / (8 .) 9
deleting

folder, DelFold 174
variable, DelVar 174

deleting variables 87
DelFold, delete folder 174
DelVar, delete variable 174
denominator 161
derivatives 50

first derivative, d () 172
first derivative, d() 50
numeric derivative, nDeriv() 210

deSolve(), solution 174
det(), matrix determinant 176
diag(), matrix diagonal 176
dialog box

CLOCK 24
edit categories 19
menu indicator 32
MODE 10
to open Apps 16

dialog box, define, Dialog 177
Dialog, define dialog box 177
Diamond modifier key (8)

description 6
status 22

dim(), dimension 177
Disp, display I/O screen 79, 177
DispG, display graph 178

DispHome, display Home screen 178
display

graph, DispG 178
Home screen, DispHome 178
I/O screen, Disp 79, 177
table, DispTbl 178

display as
binary, 4Bin 157
cylindrical vector, 4Cylind 170
decimal angle, 4DD 172
decimal integer, 4Dec 173
degree/minute/second, 4DMS

178
hexadecimal, 4Hex 196
polar vector, 4Polar 219
rectangular vector, 4Rect 228
spherical vector, 4Sphere 246

display digits mode 10
DispTbl, display table 178
divide, / 267
dot

addition, .+ 268
division, ./ 269
multiplication, .* 269
power, .^ 269
subtraction, .– 268

dotP(), dot product 178
DrawFunc, draw function 179
drawings and drawing

circle, Circle 159
clearing, ClrDraw 160
contour, DrwCtour 180
function, DrawFunc 179
horizontal line, LineHorz 201
inverse, DrawInv 179
line, Line 201
parametric, DrawParm 179
polar, DrawPol 179
slope, DrawSlp 180
tangent line, LineTan 201
vertical line, LineVert 202

DrawInv, draw inverse 179
DrawParm, draw parametric 179
DrawPol, draw polar 179
DrawSlp, draw slope 180
DropDown, drop-down menu 180
DrwCtour, draw contour 180
Index 287

E
E, exponent 7, 181
e^(), e to a power 181
eigVc(), eigenvector 181
eigVl(), eigenvalue 182
Else, else 196
ElseIf, else if 182
end

custom, EndCustm 169
dialog, EndDlog 177
for, EndFor 189
function, EndFunc 190
if, EndIf 196
loop, EndLoop 205
program, EndPrgm 77, 220
toolbar, EndTBar 255
try, EndTry 256
while, EndWhile 258

EndCustm, end custom 169
EndDlog, end dialog 177
EndFor, end for 189
EndFunc, end function 190
EndIf, end if 196
EndLoop, end loop 205
EndPrgm, end program 77, 220
EndTBar, end toolbar 255
EndTry, end try 256
EndWhile, end while 258
English category 18
entry line

clearing the history area 16
cursor rests on 15
inserting commands 13
recalling 15

entry(), entry 183
entry/answer pairs 16

status 23
equal, = 270
error conditions after APD 3
errors and troubleshooting

clear error, ClrErr 160
Memory error 147
pass error, PassErr 218
transmission 119, 126

evaluate polynomial, polyEval() 219
EXACT mode status 22
exact(), exact 183

exact/approx mode 10
example

changing mode settings 11
editing categories 20
restoring the default custom

menu 34
selecting menu options 31
turning off the clock 28
turning on/off the custom menu

34
using dialog boxes 33
using the CHAR menu 5
using the keyboard map 6

examples, previews, activities
3D graphing 61, 94
additional graphing topics 66
baseball 103
CBL 2 program 102
complex factors 110
complex numbers 47
complex zeroes 105
constants and measurement

units 52
cos(x)=sin(x) activity 93
cubic polynomial 105
data filtering 99
data/matrix editor 70
decomposing a rational function

97
derivatives 50
differential equations 63
expanding expressions 48
factorial 47
function graphing 53, 55
graphing functions 53
integrals 50
memory management 84
number bases 82
numeric solver 81
parametric graphing 56, 104
path of a ball 56
polar rose 58
pole-corner problem 89
population 71
prime factors 47
programming 77, 79
Pythagorean theorem 89
quadratic formula 90
288 Index

rational factors 110
real factors 110
reducing expressions 48
sampling 110
sequence graphing 59
solving linear equations 49
split screen 68, 104
standard annuity 107
statistics 71
symbolic manipulation 50
tables 67
text operations 79
time value of money 108
trees and forest 59
tutorial script with the text

editor 95
variable management 84

exclusive or (Boolean), xor 259
exclusive or picture, XorPic 259
Exec, execute assembly language

183
execute assembly language, Exec

183
execute program, Prgm 77, 220
Exit, exit 184
exp4list(), expression to list 184
expand(), expand 48, 91, 105, 184
expand, expand() 48, 91, 105
exponent key (2 ^) 7
exponent, E 7, 181
exponential Format mode 10
exponential regession, ExpReg 186
expr(), string to expression 185
ExpReg, exponential regession 186
expressions 14

expanding 48
expression to list, exp(list() 184
reducing 48
string to expression, expr() 185

F
factor(), factor 48, 91, 110, 186
factor, factor() 48, 91, 110
factorial, ! 47, 271
factoring

activity 110
FCC statement ii

Fill, matrix fill 187
Flash applications 131, 132, 134

deleting 119
FLASH APPLICATIONS (8 O)

accessing Apps not listed 36
description 30
key command 8

Flash, upgrading operating system
123, 124

floor(), floor 94, 187
floor, floor() 94
fMax(), function maximum 188
fMin(), function minimum 188
FnOff, function off 188
FnOn, function on 188
folders

delete, DelFold 174
get/return, getFold() 192
locking/unlocking 140
new, NewFold 211
pasting name 142
renaming 138, 140
setting, setFold() 234
transmitting 117, 118
VARLINK 134, 135, 137, 138, 139

For, for 189
for, For 189
format(), format string 189
FORMATS dialog box 63
fpart(), function part 190
fractions 97, 221
Frobenius norm, norm() 213
full-screen mode

2 K 9
Apps desktop 22
changing from split-screen 40
displaying Apps in 39

FUNC (function) mode 23
Func, program function 190
function keys (,–-)

moving among toolbar menus 33
selecting categories 16, 18
selecting menus 29

functions 12
maximum, fMax() 188
minimum, fMin() 188
off, FnOff 188
on, FnOn 188
Index 289

part, fPart() 190
program function, Func 190
user-defined 173

G
Garbage collection message 144,

145, 146
gcd(), greatest common divisor 190
get time zone, GetTmZn() 194
Get, get/return CBL/CBR value 190
get/return

calculator, GetCalc 121, 191
CBL/CBR value, Get 190
configuration, getConfg() 191
denominator, getDenom() 192
folder, getFold() 192
key, getKey() 193
mode, getMode() 193
number, getNum() 193
type, getType() 194
units, getUnits() 195

GetCalc, get/return calculator 121,
191

getConfg(), get/return
configuration 191

getDate(), get date 192
getDenom(), get/return

denominator 192
getDtFmt(), get date format 192
getDtStr(), get date string 192
getKey(), get/return key 193
getMode(), get/return mode 193
getNum(), get/return number 193
getTime(), get time 193
getTmFmt(), get time format 193
getTmStr(), get time string 194
getTmZn(), get time zone 194
getType(), get/return type 194
getUnits(), get/return units 195
Goto, go to 195
graph

mode 10, 23
number mode 23

graph mode status 23
graph number mode status 23
Graph, graph 195
graphing category 18

graphs
number of 38, 39

graphs and graphing
clearing, ClrGraph 160
coordinates 53
functions off, FnOff 188
functions on, FnOn 188
graph, Graph 195
Minimum 53
operations 150
recall graph database, RclGDB

227
setting, setGraph() 234
shading, Shade 238
store graph database, StoGDB

247
style, Style 248
trace, Trace 95, 102, 103, 105, 256
tracing 53
Y= editor 53, 55

greater than or equal, |, >= 271
greater than, > 271
greatest common divisor, gcd() 190
Greek characters 5

H
Hand modifier key (1)

status 22
hexadecimal

display, 4Hex 196
indicator, 0h 278

hidden surface 63
highlighting

characters when editing 6
to view full name of App 2

History area
status 23

History indicator 15
Home icon 14
Home screen. See calculator home

screen
hyperbolic

arccosine cosh/() 164
arcsine, sinh/() 242
arctangent, tanh/() 252
cosecant, csch() 166
cosine, cosh() 164
290 Index

cotangent, coth() 165
secant, sech() 232
sine, sinh() 242
tangent, tanh() 251

I
ID list 126, 127, 128
ID number 123, 124, 126, 127, 128
identity matrix, identity() 196
identity(), identity matrix 196
If, if 196
imag(), imaginary part 197
indirection, # 273
initial startup 1
input string, InputSt 121, 198
Input, input 197
InputSt, input string 121, 198
insert mode (2 /) 9
inString(), within string 198
instructions

calculator Home screen 14
Catalog 12

int(), integer 198
intDiv(), integer divide 198
integer part, iPart() 60, 199
integer, int() 198
integrate, *() 50, 272
international/accented characters 5
inverse cosecant, csc/() 166
inverse cotangent, cot/() 165
inverse hyperbolic

cosecant, csch/() 166
cotangent, coth/() 165
secant, sech/() 233

inverse, x/ 276
iPart(), integer part 199
isClkOn(), is clock on 199
isPrime(), prime test 199
Item, menu item 199

K
key commands

keyboard map 6
special characters 5

keyboard
map 5

keys
function 7
modifier 6

L
language mode

changing mode setting 11
viewing 10

Lbl, label 199
lcm, least common multiple 200
least common multiple, lcm 200
left(), left 200
left-right split screen

setting 36
setting initial Apps 38
status 21

less than or equal, #, 271
less than, < 270
limit(), limit 200
Line, draw line 201
linear regression, LinReg 202
LineHorz, draw horizontal line 201
LineTan, draw tangent line 201
LineVert, draw vertical line 202
Link transmission table 129
linking and transmitting 233

calculator to calculator 115, 116,
117, 121, 122, 123

cancelling 118
errors 119, 125, 126
Flash applications 117, 120, 121
folders 117, 118, 119
get/return CBL/CBR value, Get

190
program 121
send chat, SendChat 121
send list variable, Send 233
send to calculator, SendCalc 121
variables 117, 118

LinReg, linear regression 202
list difference, @list() 202
list to matrix, list4mat() 202
list4mat(), list to matrix 202
lists

augment/concatenate,
augment() 156

cross product, crossP() 165
Index 291

cumulative sum, cumSum() 168
difference, @list() 202
dot product, dotP() 178
expression to list, exp4list() 184
list to matrix, list4mat() 202
matrix to list, mat4list() 207
maximum, max() 207
mid-string, mid() 208
minimum, min() 209
new data, NewData 210
new, newList() 211
operations 150
product, product() 220
sort ascending, SortA 246
sort descending, SortD 246
summation, sum() 230, 249

ln(), natural logarithm 203
LnReg, logarithmic regression 203
Local, local variable 204
Lock, lock variable 204
locked/archived variable status 23
log(), logarithm 204
logarithm, log() 204
logarithmic regression, LnReg 203
logarithms 203, 204
Logistic, logistic regression 205
Loop, loop 205
LU, matrix lower-upper

decomposition 206

M
mat4list(), matrix to list 207
math category 18
MATH menu (2 I) 30
math operations 14, 151
matrices

augment/concatenate,
augment() 92, 156

column dimension, colDim() 161
column norm, colNorm() 161
cumulative sum, cumSum() 168
determinant, det() 176
diagonal, diag() 176
dimension, dim() 177
dot addition, .+ 268
dot division, ./ 269
dot multiplication, .(269

dot power, .^ 269
dot subtraction, .– 268
eigenvalue, eigVl() 182
eigenvector, eigVc() 181
filling, Fill 187
identity, identity() 196
list to matrix, list4mat() 202
lower-upper decomposition, LU

206
matrix to list, mat4list() 207
maximum, max() 207
minimum, min() 209
new data, NewData 210
new, newMat() 211
operations 151
product, product() 220
QR factorization, QR 224
random, randMat() 92, 226
reduced row echelon form,

rref() 232
row addition, rowAdd() 231
row dimension, rowDim() 231
row echelon form, ref() 228
row multiplication and addition,

mRowAdd() 209
row norm, rowNorm() 231
row operation, mRow() 209
row swap, rowSwap() 231
submatrix, subMat() 249
summation, sum() 230, 249
transpose, T 250

matrix to list, mat4list() 207
max(), maximum 207
mean(), mean 207
measurement

conversions (2 4) 9
median(), median 207
medium-medium line regression,

MedMed 208
MedMed, medium-medium line

regression 208
memory

archiving, Archive 143, 144, 156
checking 131, 132
resetting 131, 132
unarchive, Unarchiv 143, 144,

257
292 Index

VARLINK screen 132, 134, 135,
137, 138, 139, 143

MEMORY (2 ;) 9
Memory error 147
menu item, Item 199
Menus

APPLICATIONS (O) 30, 35
menus

canceling 33
CHAR 5, 9, 30
CUSTOM (2 F) 9, 34
FLASH APPLICATIONS (8 O)

8, 30, 36
options 6
selecting options 30
submenu options 31

messages
Garbage collection 144, 145, 146

mid(), mid-string 208
min(), minimum 209
Minimum (graph math tool) 53
minute notation, ' 275
mod(), modulo 209
modes

3D (three-dimensional) 23
Angle 10, 22
APPROX 22
Apps desktop 10
AUTO 22
Base 10
complex format 10
current 10
custom units 10
DE (differential equation) 23
DEG (degree) 22
display digits 10
EXACT 22
exact/approx 10
exponential format 10
fullscreen 9, 18, 22, 38, 39, 40
FUNC (function) 23
get/return, getMode() 193
graph 10
graph number 23
graph type 23
grayed out 10
insert (2 /) 9
language 10, 11

overwrite (2 /) 9
PAR (parametric) 23
POL (polar) 23
Pretty Print 10
RAD (radian) 22
SEQ (sequence) 23
setting, setMode() 235
settings 10
split screen 2, 10, 18, 21, 23, 36,

38, 39
unit system 10
vector format 10

modifier keys (2 8 7 1) 6
status 22

MoveVar, move variable 209
mRow(), matrix row operation 209
mRowAdd(), matrix row

multiplication and addition 209
multiply, * 266

N
natural logarithm, ln() 203
nCr(), combinations 210
nDeriv(), numeric derivative 210
negate, M 269
negation key (5) 7
negative numbers 7
new

data, NewData 210
folder, NewFold 211
list, newList() 211
matrix, newMat() 211
picture, NewPic 211
plot, NewPlot 212
problem, NewProb 212

NewData, new data 210
NewFold, new folder 211
newList(), new list 211
newMat(), new matrix 211
NewPic, new picture 211
NewPlot, new plot 211
NewProb, new problem 212
nInt(), numeric integral 212
norm(), Frobenius norm 213
not (Boolean), not 213
not equal, #, /= 270
not, Boolean not 213
Index 293

nPr(), permutations 213
nSolve(), numeric solution 214
numeric

derivative, nDeriv() 210
integral, nInt() 212
solution, nSolve() 214

numeric keypad 7

O
OneVar, one-variable statistic 214
operating system 124, 125
operating system (OS)

downloading 44
operating system, upgrading 123,

124
or, Boolean or 215
ord(), numeric character code 215
Organizr (organizer) category 19
OS 123, 124
Output, output 215
overwrite mode (2 /) 9

P
P4Rx(), rectangular x coordinate 216
P4Ry(), rectangular y coordinate 216
PAR (parametric) mode 23
parallelepiped activity 94
part(), part 216
PassErr, pass error 218
PAUSE 23
Pause, pause 218
percent, % 269
permutations, nPr() 213
pictures

and, AndPic 155
cycle, CyclePic 170
exclusive or, XorPic 259
new, NewPic 211
recall, RclPic 227
replace, RplcPic 231
storing, StoPic 248

pixel
change, PxlChg 222
circle, PxlCrcl 222
horizontal line, PxlHorz 222
line, PxlLine 223
off, PxlOff 223

on, PxlOn 223
test, pxlTest() 223
text, PxlText 223
vertical line, PxlVert 224

plots
data 71
new, NewPlot 212
off, PlotsOff 219
on, PlotsOn 219

PlotsOff, plots off 219
PlotsOn, plots on 219
point

change, PtChg 221
off, PtOff 221
on, PtOn 222
test, ptTest() 222
text, PtText 222

POL (polar) mode 23
polar

coordinate, R4Pq() 226
coordinate, R4Pr() 226
vector display, 4Polar 219

polyEval(), evaluate polynomial 219
polynomials

activity 105
evaluate, polyEval() 219
random, randPoly() 227

PopUp, popup menu 220
power of ten, 10^() 276
power regression, PowerReg 220
power, ^ 268
PowerReg, power regression 220
pretty print 53
Pretty Print mode 10
Prgm, execute program 77, 220
prime number test, isPrime() 199
prime numbers 48
prime, ' 275
problems (new), NewProb 212
product(), product 220
product, Π() 273
Program Editor 17
programs and programming 12

CBL 2 system 102
CBR system 102
clear error, ClrErr 160
clear graph, ClrGraph 160
clear home, ClrHome 161
294 Index

clear I/O, ClrIO 161
clear table, ClrTable 161
comment, | 278
custom toolbar off, CustmOff

169
custom toolbar on, CustmOn 169
define dialog box Dialog 177
define toolbar, Custom 169
define toolbar, Toolbar 255
define, Define 89, 173
display graph, DispG 178
display Home screen, DispHome

178
display I/O screen, Disp 79, 177
display table, DispTbl 178
drop-down menu, DropDown

180
else if, ElseIf 182
else, Else 196
end custom, EndCustm 169
end dialog, EndDlog 177
end for, EndFor 189
end function, EndFunc 190
end if, EndIf 196
end loop, EndLoop 205
end program, EndPrgm 77, 220
end toolbar, EndTBar 255
end try, EndTry 256
end while, EndWhile 258
execute assembly language, Exec

183
execute program, Prgm 77, 220
exit, Exit 184
for, For 189
format string, format() 189
function, Func 190
get/return configuration,

getConfg() 191
get/return folder, getFold() 192
get/return from calculator,

GetCalc 121, 191
get/return key, getKey() 193
get/return mode, getMode() 193
get/return units, getUnits() 195
go to, Goto 195
if, If 196
input, Input 197
label, Lbl 199

local, Local 204
loop, Loop 205
menu item, Item 199
operations 152
output, Output 215
pass error, PassErr 218
pause, Pause 218
popup menu, PopUp 220
prompt, Prompt() 221
request, Request 229
return, Return 229
stop, Stop 247
text, Text 253
Then, Then 196
title, Title 254
try, Try 256
while, While 258

Prompt(), prompt 221
proper fraction, propFrac 97
propFrac, proper fraction 97, 221
PtChg, point change 221
PtOff, point off 221
PtOn, point on 222
ptTest(), point test 222
PtText, point text 222
PxlChg, pixel change 222
PxlCrcl, pixel circle 222
PxlHorz, pixel horizontal line 222
PxlLine, pixel line 223
PxlOff, pixel off 223
PxlOn, pixel on 223
pxlTest(), pixel test 223
PxlText, pixel text 223
PxlVert, pixel vertical line 224

Q
QR factorization, QR 224
QR, QR factorization 224
quadratic regression, QuadReg 225
QuadReg, quadratic regression 225
quartic regression, QuartReg 225
QuartReg, quartic regression 225
Quit (2 K) 9

R
R, radian 274
R4Pθ(), polar coordinate 226
Index 295

R4Pr(), polar coordinate 226
RAD (radian) mode 22
radian, R 274
rand(), random number 226
randMat(), random matrix 92, 226
randNorm(), random norm 226
random

matrix, randMat() 92, 226
norm, randNorm() 226
number seed, RandSeed 92, 227
number, rand() 226
polynomial, randPoly() 227

randPoly(), random polynomial 227
RandSeed, random number seed 92,

227
rational functions activity 97
RclGDB, recall graph database 227
RclPic, recall picture 227
real(), real 227
recall

graph database, RclGDB 227
picture, RclPic 227

Recall (2 6) 9
reciprocal, x/ 276
rectangular x coordinate, P4Rx() 216
rectangular y coordinate, P4Ry() 216
rectangular-vector display, 4Rect 228
reduced row echelon form, rref() 93
ref(), row echelon form 228
regressions 202

cubic, CubicReg 168
exponential, ExpReg 186
linear regression, LinReg 202
logarithmic, LnReg 203
logistic, Logistic 205
medium-medium line, MedMed

208
power regression, PowerReg 220
quadratic formula activity 90
quadratic, QuadReg 225
quartic, QuartReg 225
sinusoidal, SinReg 243

remain(), remainder 228
Rename, rename 229
replace picture, RplcPic 231
Request, request 229
results 14

return See get/return
Return, return 229
right(), right 229
rotate(), rotate 230
round(), round 230
row echelon form, ref() 228
rowAdd(), matrix row addition 231
rowDim(), matrix row dimension

231
rowNorm(), matrix row norm 231
rowSwap(), matrix row swap 231
RplcPic, replace picture 231
rref(), reduced row echelon form 93,

232

S
sampling activity 110
SAVE COPY AS (8 S)

example 33
scientific notation 7
scripts

activity 96
tutorial 96

scrolling 15
sec(), secant 232
sec/(), inverse secant 232
secant, sec(), 232
sech(), hyperbolic secant 232
sech/(),inverse hyperbolic secant

233
Second modifier key (2)

description 6
status 22

second notation, 275
selecting categories 18
send chat, SendChat 121, 233
send list variable, Send 233
send to calculator, SendCalc 121, 233
Send, send list variable 233
SendCalc, send to calculator 121, 233
SendChat, send chat 121, 233
SEQ (sequence) mode 23
seq(), sequence 234
set

folder, setFold() 234
setDate(), set date 234
setDtFmt(), set date format 234
296 Index

setFold(), set folder 234
setGraph(), set graph 234
setMode(), set mode 235
setTable(), set table 236
setTime(), set time 236
setTmFmt(), set time format 237
setTmZn(), set time zone 237
setUnits(), set units 237
Shade, shade 238
Shift modifier key (7)

description 6
status 22

shift(), shift 239
show statistical results, ShowStat 240
ShowStat, show statistical results 240
sign(), sign 240
simult(), simultaneous equations

240
sin(), sine 241
sin/(), arcsine 241
sinh(), hyperbolic sine 242
sinh/(), hyperbolic arcsine 242
SinReg, sinusoidal regression 243
sinusoidal regression, SinReg 243
SocialSt (social studies) category 18
solution, deSolve() 174
solve(), solve 49, 50, 243
solve, solve() 49, 50
solving linear equations 49
SortA, sort ascending 246
SortD, sort descending 246
spherical vector display, (Sphere 246
split screen

switch, switch() 249
split-screen mode

active graph 23
exiting 39
Number of graphs 38
returning from within an App 18
selecting active App 39
setting 36
setting initial Apps 38
specifying Apps displayed 38
Split 1 App 38
Split 2 App 38
status 21
status and open Apps 2
viewing 10

square root, $() 273
standard annuity activity 107
standard deviation, stdDev() 247
start timer, startTmr() 246
startTmr(), start timer 246
statistics

combinations, nCr() 210
factorial, ! 47, 271
mean, mean() 207
median, median() 207
new plot, NewPlot 212
operations 153
permutations, nPr() 213
plots off, PlotsOff 219
plots on, PlotsOn 219
random norm, randNorm() 226
random number seed, RandSeed

92, 227
random number, rand() 226
show results, ShowStat 240
standard deviation, stdDev() 247
two-variable results, TwoVar 256
variance, variance() 257

status
battery low 43
on Apps desktop 2
split-screen 21

status line
command parameters 13
history information 15

stdDev(), standard deviation 247
StoGDB, store graph database 247
Stop, stop 247
StoPic, store picture 248
Store (9) key 9
storing

graph database, StoGDB 247
picture, StoPic 248
symbol, ! 277

string(), expression to string 248
strings

append, & 272
character string, char() 159
expression to string, string() 248
format, format() 189
indirection, # 273
inputting, InputSt 121
left, left() 200
Index 297

mid-string, mid() 208
operations 153
right, right() 229
rotate, rotate() 230
shift, shift() 239
string to expression, expr() 185
within, InString 198

Style, style 248
subMat(), submatrix 249
subtract, – 266
subtraction key (|) 7
sum(), summation 230, 249
sum,)() 273
support and service 279
switch(), switch 249

T
T, transpose 250
Table, build table 250
tables

clearing, ClrTable 161
displaying, DispTbl 178
setting, setTable() 236

tan(), tangent 251
tan/(), arctangent 251
tangent, tan() 251
tanh(), hyperbolic tangent 251
tanh/(), hyperbolic arctangent 252
Taylor polynomial, taylor() 252
taylor(), Taylor polynomial 252
tCollect(), trigonometric collection

253
temperature conversion, tmpCnv()

254
temperature-range conversion,

@tmpCnv() 255
tExpand(), trigonometric expansion

253
Text, text 253
Then, Then 196
three-dimensional graphing

animation 61
CONTOUR LEVELS 63
HIDDEN SURFACE 63
WIRE AND CONTOUR 63
WIRE FRAME 63

TI Connectivity Cable 40, 115, 124,
127

TI ViewScreen overhead panel
connecting 42

TI Connect software 40, 124
time

reset 29
setting 24

time value of money activity 108
timeCnv(), convert time 253
TI-Presenter video adapter

connecting 42
Title, title 254
tmpCnv(), temperature conversion

254
toolbar

define, Custom 169
off, CustmOff 169
on, CustmOn 169

Toolbar menus
calculator Home screen 29
moving among 33
replaced by custom menu 34
selecting math operations 7

Toolbar, toolbar 255
top-bottom split screen

setting 36
setting initial Apps 38
status 21

Trace, trace 95, 102, 103, 105, 256
trace, Trace 95, 102, 103, 105
tracing 53
transpose, T 250
trigonometric collection, tCollect()

253
trigonometric expansion, tExpand()

253
Try, try 256
turning clock off, ClockOff 160
turning clock on, ClockOn 160
turning off 3

after APD 3
following inactivity 3

turning on
initial startup 1

two-variable results, TwoVar 256
typing

file name 17
298 Index

to scroll through Catalog 12

U
Unarchiv, unarchive variables 143,

144, 257
unarchive variables, Unarchiv 143,

144, 257
underscore, _ 275
unit System mode 10
unit vector, unitV() 257
units

get/return, getUnits() 195
setting, setUnits() 237

unit-to-unit cable 44
connecting 42

unitV(), unit vector 257
Unlock, unlock 257
upgrading operating system (OS)

123, 124
user-defined functions 173

V
variables 23

archiving and unarchiving 143
archiving, Archive 143, 144, 156
copy, CopyVar 140, 162
copying 140
delete, DelVar 174
deleting 119
in applications 142
local, Local 204
locking/unlocking 140
pasting name 142
recall 9
referring to App files 16
renaming 138
store 9
transmitting 115, 116, 117, 118
unarchive, Unarchiv 143, 144,

257
VARLINK 132, 134, 135, 137, 138,

139, 143
variance(), variance 257
vector format mode 10
vectors

cross product, crossP() 165

cylindrical vector display, 4Cylind
170

dot product, dotP() 178
unit, unitV() 257

W
when(), when 258
While, while 258
Window Editor 36
wire-and-contour graphing 63
wire-frame graphing 63
with, | 50, 277
within string, inString() 198

X
xor, Boolean exclusive or 259
XorPic, exclusive or picture 259

Y
Y= editor 53, 55

Z
zeroes

activity 105
zeroes, zeros() 90, 260
zeros(), zeroes 90, 260
zoom

box, ZoomBox 261
data, ZoomData 262
decimal, ZoomDec 262
fit, ZoomFit 263
in, ZoomIn 263
integer, ZoomInt 263
out, ZoomOut 264
previous, ZoomPrev 264
recall, ZoomRcl 264
square, ZoomSqr 264
standard, ZoomStd 265
store, ZoomSto 265
trig, ZoomTrig 265

ZoomBox, zoom box 261
ZoomData, zoom data 262
ZoomDec, zoom decimal 262
ZoomFit, zoom fit 263
ZoomIn, zoom in 263
ZoomInt, zoom integer 263
Index 299

ZoomOut, zoom out 264
ZoomPrev, zoom previous 264
ZoomRcl, zoom recall 264
ZoomSqr, zoom square 264

ZoomStd, zoom standard 265
ZoomSto, zoom store 265
ZoomTrig, zoom trig 265
300 Index

	TI-89 Titanium
	Front Matter
	Important Information
	USA FCC Information Concerning Radio Frequency Interference
	Table of Contents
	Introduction
	The TI-89 Titanium graphing calculator
	How to use this guidebook

	1 Getting Started
	Initial start-up
	Installing the AAA Batteries
	Turning on your TI-89 Titanium for the first time
	Adjusting the contrast
	The Apps desktop
	Turning off the calculator

	TI-89 Titanium keys
	Entering special characters
	Modifier keys
	Function keys
	Numeric keypad
	Other important keys

	Mode settings
	Viewing mode settings
	Changing mode settings

	Using the Catalog to access commands
	Calculator Home screen
	About the history area
	Interpreting history information on the status line
	Modifying the history area

	Working with Apps
	Opening Apps
	Returning to the Apps desktop from within an App
	Selecting an Apps category
	Customizing the Apps categories
	Open Apps and split-screen status

	Checking status information
	Turning off the Apps desktop
	Using the clock
	Displaying the CLOCK dialog box
	Setting the time
	Setting the date
	Turning off the clock

	Using menus
	Toolbar menus
	Other menus
	Selecting menu options
	Selecting submenu options
	Using dialog boxes
	Canceling a menu
	Moving among toolbar menus
	Custom menu
	Opening Apps with the Apps desktop turned off

	Using split screens
	Setting split-screen mode
	Setting the initial Apps for split screen
	Selecting the active App
	Exiting split-screen mode

	Managing Apps and operating system (OS) versions
	Finding the OS version and identification (ID) numbers
	Deleting an Application

	Connecting your TI-89 Titanium to other devices
	Batteries
	Installing the AAA Batteries
	Replacing the AAA (alkaline) batteries
	Replacing the backup (silver oxide) battery
	Important OS download information
	Battery Precautions

	2 Previews
	Performing Computations
	Showing Computations
	Finding the Factorial of Numbers
	Expanding Complex Numbers
	Finding Prime Factors
	Expanding Expressions
	Reducing Expressions
	Factoring Polynomials
	Solving Equations
	Solving Equations with a Domain Constraint
	Finding the Derivative of Functions
	Finding the Integral of Functions

	Symbolic Manipulation
	Constants and Measurement Units
	Basic Function Graphing I
	Basic Function Graphing II
	Parametric Graphing
	Polar Graphing
	Sequence Graphing
	3D Graphing
	Differential Equation Graphing
	Additional Graphing Topics
	Tables
	Split Screens
	Data/Matrix Editor
	Statistics and Data Plots
	Programming
	Text Operations
	Numeric Solver
	Number Bases
	Memory and Variable Management
	Archiving a variable
	Deleting variables

	3 Activities
	Analyzing the Pole-Corner Problem
	Maximum Length of Pole in Hallway

	Deriving the Quadratic Formula
	Performing Computations to Derive the Quadratic Formula

	Exploring a Matrix
	Exploring a 3x3 Matrix

	Exploring cos(x) = sin(x)
	Method 1: Graph Plot
	Method 2: Symbolic Manipulation

	Finding Minimum Surface Area of a Parallelepiped
	Exploring a 3D Graph of the Surface Area of a Parallelepiped
	Finding the Minimum Surface Area Analytically

	Running a Tutorial Script Using the Text Editor
	Running a Tutorial Script

	Decomposing a Rational Function
	Decomposing a Rational Function

	Studying Statistics: Filtering Data by Categories
	Filtering Data by Categories

	CBL 2™ Program for the TI-89 Titanium
	Studying the Flight of a Hit Baseball
	Setting Up a Parametric Graph and Table
	Optional Exercise

	Visualizing Complex Zeros of a Cubic Polynomial
	Visualizing Complex Roots
	Summary

	Solving a Standard Annuity Problem
	Finding the Interest Rate of an Annuity
	Finding the Future Value of an Annuity

	Computing the Time-Value-of-Money
	Time-Value-of- Money Function
	Finding the Monthly Payment
	Finding the Number of Payments

	Finding Rational, Real, and Complex Factors
	Finding Factors

	Simulation of Sampling without Replacement
	Sampling-without- Replacement Function
	Sampling without Replacement

	Using Vectors to Determine Velocity

	4 Connectivity
	Connecting Two Units
	Connecting before Sending or Receiving

	Transmitting Variables, Flash Applications, and Folders
	Setting Up the Units
	Rules for Transmitting Variables, Flash Applications, or Folders
	Canceling a Transmission
	Common Error and Notification Messages
	Deleting Variables, Flash Applications, or Folders
	Where to Get Flash Applications (Apps)

	Transmitting Variables under Program Control
	The “Chat” Program
	Running the Program
	Stopping the Program

	Upgrading the Operating System (OS)
	Important Operating System Download Information
	Backing Up Your Unit Before an Operating System Installation
	Where to Get Operating System Upgrades
	Transferring the Operating System
	Important:
	Do Not Attempt to Cancel an Operating System Transfer
	If You are Upgrading the Operating System on Multiple Units
	Error Messages

	Collecting and Transmitting ID Lists
	ID Lists and Group Certificates
	Collecting ID Lists
	Clearing the ID List

	Compatibility among the TI-89 Titanium, Voyage™ 200, TI-89, and TI-92 Plus
	Link Transmission Table

	5 Memory and Variable Management
	Checking and Resetting Memory
	Displaying the MEMORY Screen
	Resetting the Memory

	Displaying the VAR-LINK Screen
	Displaying the VAR-LINK Screen
	Variable Types as Listed on VAR-LINK
	Closing the VAR-LINK Screen

	Manipulating Variables and Folders with VAR-LINK
	Showing the Contents of a Variable
	Selecting Items from the List
	Folders and Variables
	Creating a Folder from the VAR-LINK Screen
	Creating a Folder from the Home Screen
	Setting the Current Folder from the Home Screen
	Setting the Current Folder from the MODE Dialog Box
	Renaming Variables or Folders
	Using Variables in Different Folders
	Listing Only a Specified Folder and/or Variable Type, or Flash application
	Copying or Moving Variables from One Folder to Another
	Locking or Unlocking Variables Folders, or Flash Applications
	Deleting a Folder from the VAR-LINK Screen
	Deleting a Variable or a Folder from the Home Screen

	Pasting a Variable Name to an Application
	Which Applications Can You Use?
	Procedure

	Archiving and Unarchiving a Variable
	Why Would You Want to Archive a Variable?
	From the VAR-LINK Screen
	From the Home Screen or a Program

	If a Garbage Collection Message Is Displayed
	Responding to the Garbage Collection Message
	Why not Perform Garbage Collection Automatically, without a Message?
	Why Is Garbage Collection Necessary?
	How Unarchiving a Variable Affects the Process
	If the MEMORY Screen Shows Enough Free Space
	The Garbage Collection Process

	Memory Error When Accessing an Archived Variable
	What Causes the Memory Error?
	Correcting the Error

	Appendix A: Functions and Instructions
	Quick-Find Locator
	Alphabetical Listing of Operations

	Appendix B: General Information
	Texas Instruments Support and Service
	For general information
	For technical support
	For product (hardware) service

	Texas Instruments (TI) Warranty Information
	Customers in the U.S. and Canada Only
	Australia & New Zealand Customers only
	All Other Customers

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

